ترغب بنشر مسار تعليمي؟ اضغط هنا

Condition monitoring and early diagnostics methodologies for hydropower plants

278   0   0.0 ( 0 )
 نشر من قبل Fabrizio Ruffini
 تاريخ النشر 2019
والبحث باللغة English
 تأليف Alessandro Betti




اسأل ChatGPT حول البحث

Hydropower plants are one of the most convenient option for power generation, as they generate energy exploiting a renewable source, they have relatively low operating and maintenance costs, and they may be used to provide ancillary services, exploiting the large reservoirs of available water. The recent advances in Information and Communication Technologies (ICT) and in machine learning methodologies are seen as fundamental enablers to upgrade and modernize the current operation of most hydropower plants, in terms of condition monitoring, early diagnostics and eventually predictive maintenance. While very few works, or running technologies, have been documented so far for the hydro case, in this paper we propose a novel Key Performance Indicator (KPI) that we have recently developed and tested on operating hydropower plants. In particular, we show that after more than one year of operation it has been able to identify several faults, and to support the operation and maintenance tasks of plant operators. Also, we show that the proposed KPI outperforms conventional multivariable process control charts, like the Hotelling $t_2$ index.



قيم البحث

اقرأ أيضاً

This paper discusses linearized models of hydropower plants (HPPs). First, it reviews state-of-the-art models and discusses their non-linearities, then it proposes suitable linearization strategies for the plant head, discharge, and turbine torque. I t is shown that neglecting the dependency of the hydroacoustic resistance on the discharge leads to a linear formulation of the hydraulic circuits model. For the turbine, a numerical linearization based on a first-order Taylor expansion is proposed. Model performance is evaluated for a medium- and a low-head HPP with a Francis and Kaplan turbine, respectively. Perspective applications of these linear models are in the context of efficient model predictive control of HPPs based on convex optimization.
126 - Kunjin Chen , Yu Zhang , Qin Wang 2019
Non-intrusive load monitoring addresses the challenging task of decomposing the aggregate signal of a households electricity consumption into appliance-level data without installing dedicated meters. By detecting load malfunction and recommending ene rgy reduction programs, cost-effective non-intrusive load monitoring provides intelligent demand-side management for utilities and end users. In this paper, we boost the accuracy of energy disaggregation with a novel neural network structure named scale- and context-aware network, which exploits multi-scale features and contextual information. Specifically, we develop a multi-branch architecture with multiple receptive field sizes and branch-wise gates that connect the branches in the sub-networks. We build a self-attention module to facilitate the integration of global context, and we incorporate an adversarial loss and on-state augmentation to further improve the models performance. Extensive simulation results tested on open datasets corroborate the merits of the proposed approach, which significantly outperforms state-of-the-art methods.
The significance of air pollution and the problems associated with it are fueling deployments of air quality monitoring stations worldwide. The most common approach for air quality monitoring is to rely on environmental monitoring stations, which unf ortunately are very expensive both to acquire and to maintain. Hence environmental monitoring stations are typically sparsely deployed, resulting in limited spatial resolution for measurements. Recently, low-cost air quality sensors have emerged as an alternative that can improve the granularity of monitoring. The use of low-cost air quality sensors, however, presents several challenges: they suffer from cross-sensitivities between different ambient pollutants; they can be affected by external factors, such as traffic, weather changes, and human behavior; and their accuracy degrades over time. Periodic re-calibration can improve the accuracy of low-cost sensors, particularly with machine-learning-based calibration, which has shown great promise due to its capability to calibrate sensors in-field. In this article, we survey the rapidly growing research landscape of low-cost sensor technologies for air quality monitoring and their calibration using machine learning techniques. We also identify open research challenges and present directions for future research.
In this paper, we are interested in building a domain knowledge based deep learning framework to solve the chiller plants energy optimization problems. Compared to the hotspot applications of deep learning (e.g. image classification and NLP), it is d ifficult to collect enormous data for deep network training in real-world physical systems. Most existing methods reduce the complex systems into linear model to facilitate the training on small samples. To tackle the small sample size problem, this paper considers domain knowledge in the structure and loss design of deep network to build a nonlinear model with lower redundancy function space. Specifically, the energy consumption estimation of most chillers can be physically viewed as an input-output monotonic problem. Thus, we can design a Neural Network with monotonic constraints to mimic the physical behavior of the system. We verify the proposed method in a cooling system of a data center, experimental results show the superiority of our framework in energy optimization compared to the existing ones.
Non Intrusive Load Monitoring (NILM) or Energy Disaggregation (ED), seeks to save energy by decomposing corresponding appliances power reading from an aggregate power reading of the whole house. It is a single channel blind source separation problem (SCBSS) and difficult prediction problem because it is unidentifiable. Recent research shows that deep learning has become a growing popularity for NILM problem. The ability of neural networks to extract load features is closely related to its depth. However, deep neural network is difficult to train because of exploding gradient, vanishing gradient and network degradation. To solve these problems, we propose a sequence to point learning framework based on bidirectional (non-casual) dilated convolution for NILM. To be more convincing, we compare our method with the state of art method, Seq2point (Zhang) directly and compare with existing algorithms indirectly via two same datasets and metrics. Experiments based on REDD and UK-DALE data sets show that our proposed approach is far superior to existing approaches in all appliances.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا