ﻻ يوجد ملخص باللغة العربية
Non-intrusive load monitoring addresses the challenging task of decomposing the aggregate signal of a households electricity consumption into appliance-level data without installing dedicated meters. By detecting load malfunction and recommending energy reduction programs, cost-effective non-intrusive load monitoring provides intelligent demand-side management for utilities and end users. In this paper, we boost the accuracy of energy disaggregation with a novel neural network structure named scale- and context-aware network, which exploits multi-scale features and contextual information. Specifically, we develop a multi-branch architecture with multiple receptive field sizes and branch-wise gates that connect the branches in the sub-networks. We build a self-attention module to facilitate the integration of global context, and we incorporate an adversarial loss and on-state augmentation to further improve the models performance. Extensive simulation results tested on open datasets corroborate the merits of the proposed approach, which significantly outperforms state-of-the-art methods.
A convolutional sequence to sequence non-intrusive load monitoring model is proposed in this paper. Gated linear unit convolutional layers are used to extract information from the sequences of aggregate electricity consumption. Residual blocks are al
Non Intrusive Load Monitoring (NILM) or Energy Disaggregation (ED), seeks to save energy by decomposing corresponding appliances power reading from an aggregate power reading of the whole house. It is a single channel blind source separation problem
Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions, which is a typical application of data analysis. {NILM a
Existing methods of non-intrusive load monitoring (NILM) in literatures generally suffer from high computational complexity and/or low accuracy in identifying working household appliances. This paper proposes an event-driven Factorial Hidden Markov m
In the recent years, there has been an increasing academic and industrial interest for analyzing the electrical consumption of commercial buildings. Whilst having similarities with the Non Intrusive Load Monitoring (NILM) tasks for residential buildi