ﻻ يوجد ملخص باللغة العربية
This paper aims to build an estimate of an unknown density of the data with measurement error as a linear combination of functions from a dictionary. Inspired by the penalization approach, we propose the weighted Elastic-net penalized minimal $ell_2$-distance method for sparse coefficients estimation, where the adaptive weights come from sharp concentration inequalities. The optimal weighted tuning parameters are obtained by the first-order conditions holding with a high probability. Under local coherence or minimal eigenvalue assumptions, non-asymptotical oracle inequalities are derived. These theoretical results are transposed to obtain the support recovery with a high probability. Then, some numerical experiments for discrete and continuous distributions confirm the significant improvement obtained by our procedure when compared with other conventional approaches. Finally, the application is performed in a meteorology data set. It shows that our method has potency and superiority of detecting the shape of multi-mode density compared with other conventional approaches.
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class
We study minimax density estimation on the product space $mathbb{R}^{d_1}timesmathbb{R}^{d_2}$. We consider $L^p$-risk for probability density functions defined over regularity spaces that allow for different level of smoothness in each of the variab
This paper is concerned with density estimation of directional data on the sphere. We introduce a procedure based on thresholding on a new type of spherical wavelets called {it needlets}. We establish a minimax result and prove its optimality. We are
We investigate an algorithm named histogram transform ensembles (HTE) density estimator whose effectiveness is supported by both solid theoretical analysis and significant experimental performance. On the theoretical side, by decomposing the error te
This paper deals with the estimation of hidden periodicities in a non-linear regression model with stationary noise displaying cyclical dependence. Consistency and asymptotic normality are established for the least-squares estimates.