This paper deals with the estimation of hidden periodicities in a non-linear regression model with stationary noise displaying cyclical dependence. Consistency and asymptotic normality are established for the least-squares estimates.
For the class of Gauss-Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a determinis
tic signal and the Gauss-Markov process can be observed. In particular we provide sufficient conditions such that asymptotic equivalence of the two models holds for functions from a given class, and we verify these for the special cases of Sobolev ellipsoids and Holder classes with smoothness index $> 1/2$ under mild assumptions on the Gauss-Markov process at hand. To derive these results, we develop an explicit characterization of the reproducing kernel Hilbert space associated with the Gauss-Markov process, that hinges on a characterization of such processes by a property of the corresponding covariance kernel introduced by Doob. In order to demonstrate that the given assumptions on the Gauss-Markov process are in some sense sharp we also show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our results demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with independent standard normal distributed errors can be extended to a broad class of models with dependent data.
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we s
how that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
This paper discusses asymptotic distributions of various estimators of the underlying parameters in some regression models with long memory (LM) Gaussian design and nonparametric heteroscedastic LM moving average errors. In the simple linear regressi
on model, the first-order asymptotic distribution of the least square estimator of the slope parameter is observed to be degenerate. However, in the second order, this estimator is $n^{1/2}$-consistent and asymptotically normal for $h+H<3/2$; nonnormal otherwise, where $h$ and $H$ are LM parameters of design and error processes, respectively. The finite-dimensional asymptotic distributions of a class of kernel type estimators of the conditional variance function $sigma^2(x)$ in a more general heteroscedastic regression model are found to be normal whenever $H<(1+h)/2$, and non-normal otherwise. In addition, in this general model, $log(n)$-consistency of the local Whittle estimator of $H$ based on pseudo residuals and consistency of a cross validation type estimator of $sigma^2(x)$ are established. All of these findings are then used to propose a lack-of-fit test of a parametric regression model, with an application to some currency exchange rate data which exhibit LM.
Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] considered the estimation of the risk function $psi (x)$ in the proportional hazards model. Their proposed estimator is based on integrating the estimated derivative function obtained through
a local version of the partial likelihood. They proved the large sample properties of the derivative function, but the large sample properties of the estimator for the risk function itself were not established. In this paper, we consider direct estimation of the relative risk function $psi (x_2)-psi (x_1)$ for any location normalization point $x_1$. The main novelty in our approach is that we select observations in shrinking neighborhoods of both $x_1$ and $x_2$ when constructing a local version of the partial likelihood, whereas Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] only concentrated on a single neighborhood, resulting in the cancellation of the risk function in the local likelihood function. The asymptotic properties of our estimator are rigorously established and the variance of the estimator is easily estimated. The idea behind our approach is extended to estimate the differences between groups. A simulation study is carried out.
We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing emp
irical principal components by their population counterparts. Our approach relies on upper bounds for the excess risk of principal component analysis.