ﻻ يوجد ملخص باللغة العربية
Long-distance transport of spin information in insulators without long-range magnetic order has been recently reported. Here, we perform a complete characterization of amorphous Y$_3$Fe$_5$O$_{12}$ (a-YIG) films grown on top of SiO$_2$. We confirm a clear amorphous structure and paramagnetic behavior of our a-YIG films, with semiconducting behavior resistivity that strongly decays with increasing temperature. The non-local transport measurements show a signal which is not compatible with spin transport and can be attributed to the drop of the a-YIG resistivity caused by Joule heating. Our results emphasize that exploring spin transport in amorphous materials requires careful procedures in order to exclude the charge contribution from the spin transport signals.
Ferrimagnetic Y$_3$Fe$_5$O$_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with other rare earth elements that have a net magnetic moment, we can introduce a
In spin transport experiments with spin currents propagating through antiferromagnetic (AFM) material, the antiferromagnet is treated as a mainly passive spin conductor not generating nor adding any spin current to the system. The spin current transm
We report a tunable spin mixing conductance, up to $pm 22%$, in a Y${}_{3}$Fe${}_{5}$O${}_{12}$/Platinum (YIG/Pt) bilayer.This control is achieved by applying a gate voltage with an ionic gate technique, which exhibits a gate-dependent ferromagnetic
Magnetic moments in an ultra-thin Pt film on a ferrimagnetic insulator Y$_3$Fe$_5$O$_{12}$ (YIG) have been investigated at high magnetic fields and low temperatures by means of X-ray magnetic circular dichroism (XMCD). We observed an XMCD signal due
We demonstrate the magnetically-induced transparency (MIT) effect in Y$_3$Fe$_5$O$_{12}$(YIG)/Permalloy(Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that