ﻻ يوجد ملخص باللغة العربية
We report a tunable spin mixing conductance, up to $pm 22%$, in a Y${}_{3}$Fe${}_{5}$O${}_{12}$/Platinum (YIG/Pt) bilayer.This control is achieved by applying a gate voltage with an ionic gate technique, which exhibits a gate-dependent ferromagnetic resonance line width. Furthermore, we observed a gate-dependent spin pumping and spin Hall angle in the Pt layer, which is also tunable up to $pm$ 13.6%. This work experimentally demonstrates spin current control through spin pumping and a gate voltage in a YIG/Pt bilayer, demonstrating the crucial role of the interfacial charge density for the spin transport properties in magnetic insulator/heavy metal bilayers.
In spin transport experiments with spin currents propagating through antiferromagnetic (AFM) material, the antiferromagnet is treated as a mainly passive spin conductor not generating nor adding any spin current to the system. The spin current transm
Ferrimagnetic Y$_3$Fe$_5$O$_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with other rare earth elements that have a net magnetic moment, we can introduce a
A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to cont
Long-distance transport of spin information in insulators without long-range magnetic order has been recently reported. Here, we perform a complete characterization of amorphous Y$_3$Fe$_5$O$_{12}$ (a-YIG) films grown on top of SiO$_2$. We confirm a
Anomalous Hall-like signals in platinum in contact with magnetic insulators are common observations that could be explained by either proximity magnetization or spin Hall magnetoresistance. In this work, longitudinal and transverse magnetoresistances