ﻻ يوجد ملخص باللغة العربية
Magnetic moments in an ultra-thin Pt film on a ferrimagnetic insulator Y$_3$Fe$_5$O$_{12}$ (YIG) have been investigated at high magnetic fields and low temperatures by means of X-ray magnetic circular dichroism (XMCD). We observed an XMCD signal due to the magnetic moments in a Pt film at the Pt $L_{3}$- and $L_{2}$-edges. By means of the element-specific magnetometry, we found that the XMCD signal at the Pt $L_{3}$-edge gradually increases with increasing the magnetic field even when the field is much greater than the saturation field of YIG. Importantly, the observed XMCD intensity was found to be much greater than the intensity expected from the Pauli paramagnetism of Pt when the Pt film is attached to YIG. These results imply the emergence of induced paramagnetic moments in Pt on YIG and explain the characteristics of the unconventional Hall effect in Pt/YIG systems.
Ferrimagnetic Y$_3$Fe$_5$O$_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with other rare earth elements that have a net magnetic moment, we can introduce a
Long-distance transport of spin information in insulators without long-range magnetic order has been recently reported. Here, we perform a complete characterization of amorphous Y$_3$Fe$_5$O$_{12}$ (a-YIG) films grown on top of SiO$_2$. We confirm a
The magnetic state of heavy metal Pt thin films in proximity to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$ has been investigated systematically by means of x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity measuremen
The strong perpendicular magnetic anisotropy of $L{rm1_0}$-ordered FePt has been the subject of extensive studies for a long time. However, it is not known which element, Fe or Pt, mainly contributes to the magnetic anisotropy energy (MAE). We have i
We demonstrate the magnetically-induced transparency (MIT) effect in Y$_3$Fe$_5$O$_{12}$(YIG)/Permalloy(Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that