ﻻ يوجد ملخص باللغة العربية
We build a bridge between two algebraic structures in SCFT: a VOA in the Schur sector of 4d $mathcal{N}=2$ theories and an associative algebra in the Higgs sector of 3d $mathcal{N}=4$. The natural setting is a 4d $mathcal{N}=2$ SCFT placed on $S^3times S^1$: by sending the radius of $S^1$ to zero, we recover the 3d $mathcal{N}=4$ theory, and the corresponding VOA on the torus degenerates to the associative algebra on the circle. We prove that: 1) the Higgs branch operators remain in the cohomology; 2) all the Schur operators of the non-Higgs type are lifted by line operators wrapped on the $S^1$; 3) no new cohomology classes are added. We show that the algebra in 3d is given by the quotient $mathcal{A}_H = {rm Zhu}_{s}(V)/N$, where ${rm Zhu}_{s}(V)$ is the non-commutative Zhu algebra of the VOA $V$ (for ${s}in{rm Aut}(V)$), and $N$ is a certain ideal. This ideal is the null space of the (${s}$-twisted) trace map $T_{s}: {rm Zhu}_{s}(V) to mathbb{C}$ determined by the torus 1-point function in the high temperature (or small complex structure) limit. It therefore equips $mathcal{A}_H$ with a non-degenerate (twisted) trace, leading to a short star-product according to the recent results of Etingof and Stryker. The map $T_{s}$ is easy to determine for unitary VOAs, but has a much subtler structure for non-unitary and non-$C_2$-cofinite VOAs of our interest. We comment on relation to the Beem-Rastelli conjecture on the Higgs branch and the associated variety. A companion paper will explore further details, examples, and some applications of these ideas.
We introduce the free quantum noncommutative fields as described by braided tensor products. The multiplication of such fields is decomposed into three operations, describing the multiplication in the algebra M of functions on noncommutative space-ti
We study the inner product of Bethe states in the inhomogeneous periodic XXX spin-1/2 chain of length L, which is given by the Slavnov determinant formula. We show that the inner product of an on-shell M-magnon state with a generic M-magnon state is
We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only poss
In this note we classify invariant star products with quantum momentum maps on symplectic manifolds by means of an equivariant characteristic class taking values in the equivariant cohomology. We establish a bijection between the equivalence classes
One can derive a large class of new $mathcal{N}=1$ SCFTs by turning on $mathcal{N}=1$ preserving deformations for $mathcal{N}=2$ Argyres-Dougals theories. In this work, we use $mathcal{N}=2$ superconformal indices to get indices of $mathcal{N}=1$ SCF