ﻻ يوجد ملخص باللغة العربية
We introduce the free quantum noncommutative fields as described by braided tensor products. The multiplication of such fields is decomposed into three operations, describing the multiplication in the algebra M of functions on noncommutative space-time, the product in the algebra H of deformed field oscillators, and the braiding by factor Psi_{M,H} between algebras M and H. For noncommutativity generated by the twist factor we shall employ the star-product realizations of the algebra M in terms of functions on standard Minkowski space. The covariance of single noncommutative quantum fields under deformed Poincare symmetries is described by the algebraic covariance conditions which are equivalent to the deformation of generalized Heisenberg equations on Poincare group manifold. We shall calculate the covariant braided field commutator, which for free quantum noncommutative fields provides the field quantization condition and is given by standard Pauli-Jordan function. For ilustration of our new scheme we present explicit calculations for the well-known case in the literature of canonically deformed free quantum fields.
We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only poss
We consider the construction of twisted tensor products in the category of C*-algebras equipped with orthogonal filtrations and under certain assumptions on the form of the twist compute the corresponding quantum symmetry group, which turns out to be
Massive and massless potentials play an essential role in the perturbative formulation of particle interactions. Many difficulties arise due to the indefinite metric in gauge theoretic approaches, or the increase with the spin of the UV dimension of
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometr
We perform the quantisation of antisymmetric tensor-spinors (fermionic $p$-forms) $psi^alpha_{mu_1 dots mu_p}$ using the Batalin-Vilkovisky field-antifield formalism. Just as for the gravitino ($p=1$), an extra propagating Nielsen-Kallosh ghost appea