ﻻ يوجد ملخص باللغة العربية
We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only possible for a light-like version of the commutation relations, if one requires invariance of the tensor product algebra under the coaction of the $kappa$-Poincare group. This necessitates a braided tensor product. We study the representations of this product, and prove that $kappa$-Poincare-invariant N-point functions belong to an Abelian subalgebra, and are therefore commutative. We use this construction to define the 2-point Whightman and Pauli--Jordan functions, which turn out to be identical to the undeformed ones. We finally outline how to construct a free scalar $kappa$-Poincare-invariant quantum field theory, and identify some open problems.
We introduce the free quantum noncommutative fields as described by braided tensor products. The multiplication of such fields is decomposed into three operations, describing the multiplication in the algebra M of functions on noncommutative space-ti
The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We s
We consider a noncommutative field theory with space-time $star$-commutators based on an angular noncommutativity, namely a solvable Lie algebra: the Euclidean in two dimension. The $star$-product can be derived from a twist operator and it is shown
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare
The fuzzy disc is a discretization of the algebra of functions on the two dimensional disc using finite matrices which preserves the action of the rotation group. We define a $varphi^4$ scalar field theory on it and analyze numerically for three diff