ترغب بنشر مسار تعليمي؟ اضغط هنا

$kappa$-Poincare-comodules, Braided Tensor Products and Noncommutative Quantum Field Theory

113   0   0.0 ( 0 )
 نشر من قبل Fedele Lizzi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the obstruction to the construction of a multiparticle field theory on a $kappa$-Minkowski noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries of the problem. This construction is only possible for a light-like version of the commutation relations, if one requires invariance of the tensor product algebra under the coaction of the $kappa$-Poincare group. This necessitates a braided tensor product. We study the representations of this product, and prove that $kappa$-Poincare-invariant N-point functions belong to an Abelian subalgebra, and are therefore commutative. We use this construction to define the 2-point Whightman and Pauli--Jordan functions, which turn out to be identical to the undeformed ones. We finally outline how to construct a free scalar $kappa$-Poincare-invariant quantum field theory, and identify some open problems.

قيم البحث

اقرأ أيضاً

We introduce the free quantum noncommutative fields as described by braided tensor products. The multiplication of such fields is decomposed into three operations, describing the multiplication in the algebra M of functions on noncommutative space-ti me, the product in the algebra H of deformed field oscillators, and the braiding by factor Psi_{M,H} between algebras M and H. For noncommutativity generated by the twist factor we shall employ the star-product realizations of the algebra M in terms of functions on standard Minkowski space. The covariance of single noncommutative quantum fields under deformed Poincare symmetries is described by the algebraic covariance conditions which are equivalent to the deformation of generalized Heisenberg equations on Poincare group manifold. We shall calculate the covariant braided field commutator, which for free quantum noncommutative fields provides the field quantization condition and is given by standard Pauli-Jordan function. For ilustration of our new scheme we present explicit calculations for the well-known case in the literature of canonically deformed free quantum fields.
The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We s how that these models can be studied in a worldline approach implemented in phase space and arrive to a master formula for the $n$-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the noncommutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other nonlocal operators.
We consider a noncommutative field theory with space-time $star$-commutators based on an angular noncommutativity, namely a solvable Lie algebra: the Euclidean in two dimension. The $star$-product can be derived from a twist operator and it is shown to be invariant under twisted Poincare transformations. In momentum space the noncommutativity manifests itself as a noncommutative $star$-deformed sum for the momenta, which allows for an equivalent definition of the $star$-product in terms of twisted convolution of plane waves. As an application, we analyze the $lambda phi^4$ field theory at one-loop and discuss its UV/IR behaviour. We also analyze the kinematics of particle decay for two different situations: the first one corresponds to a splitting of space-time where only space is deformed, whereas the second one entails a non-trivial $star$-multiplication for the time variable, while one of the three spatial coordinates stays commutative.
It is by now well known that the Poincare group acts on the Moyal plane with a twisted coproduct. Poincare invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincare action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincare group, ensuring also the invariance of the S-matrix under the twisted action of the group . A significant new contribution here is the construction of the Poincare generators using quantum fields.
The fuzzy disc is a discretization of the algebra of functions on the two dimensional disc using finite matrices which preserves the action of the rotation group. We define a $varphi^4$ scalar field theory on it and analyze numerically for three diff erent limits for the rank of the matrix going to infinity. The numerical simulations reveal three different phases: uniform and disordered phases already the present in the commutative scalar field theory and a nonuniform ordered phase as a noncommutative effects. We have computed the transition curves between phases and their scaling. This is in agreement with studies on the fuzzy sphere, although the speed of convergence for the disc seems to be better. We have performed also three the limits for the theory in the cases of the theory going to the commutative plane or commutative disc. In this case the theory behaves differently, showing the intimate relationship between the nonuniform phase and noncommutative geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا