ﻻ يوجد ملخص باللغة العربية
Incorporating preclinical animal data, which can be regarded as a special kind of historical data, into phase I clinical trials can improve decision making when very little about human toxicity is known. In this paper, we develop a robust hierarchical modelling approach to leverage animal data into new phase I clinical trials, where we bridge across non-overlapping, potentially heterogeneous patient subgroups. Translation parameters are used to bring both historical and contemporary data onto a common dosing scale. This leads to feasible exchangeability assumptions that the parameter vectors, which underpin the dose-toxicity relationship per study, are assumed to be drawn from a common distribution. Moreover, human dose-toxicity parameter vectors are assumed to be exchangeable either with the standardised, animal study-specific parameter vectors, or between themselves. Possibility of non-exchangeability for each parameter vector is considered to avoid inferences for extreme subgroups being overly influenced by the other. We illustrate the proposed approach with several trial data examples, and evaluate the operating characteristics of our model compared with several alternatives in a simulation study. Numerical results show that our approach yields robust inferences in circumstances, where data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.
Integrated phase I-II clinical trial designs are efficient approaches to accelerate drug development. In cases where efficacy cannot be ascertained in a short period of time, two-stage approaches are usually employed. When different patient populatio
Interval designs are a class of phase I trial designs for which the decision of dose assignment is determined by comparing the observed toxicity rate at the current dose with a prespecified (toxicity tolerance) interval. If the observed toxicity rate
We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework
Most clinical trials involve the comparison of a new treatment to a control arm (e.g., the standard of care) and the estimation of a treatment effect. External data, including historical clinical trial data and real-world observational data, are comm
Basket trials have emerged as a new class of efficient approaches in oncology to evaluate a new treatment in several patient subgroups simultaneously. In this paper, we extend the key ideas to disease areas outside of oncology, developing a robust Ba