ﻻ يوجد ملخص باللغة العربية
Basket trials have emerged as a new class of efficient approaches in oncology to evaluate a new treatment in several patient subgroups simultaneously. In this paper, we extend the key ideas to disease areas outside of oncology, developing a robust Bayesian methodology for randomised, placebo-controlled basket trials with a continuous endpoint to enable borrowing of information across subtrials with similar treatment effects. After adjusting for covariates, information from a complementary subtrial can be represented into a commensurate prior for the parameter that underpins the subtrial under consideration. We propose using distributional discrepancy to characterise the commensurability between subtrials for appropriate borrowing of information through a spike-and-slab prior, which is placed on the prior precision factor. When the basket trial has at least three subtrials, commensurate priors for point-to-point borrowing are combined into a marginal predictive prior, according to the weights transformed from the pairwise discrepancy measures. In this way, only information from subtrial(s) with the most commensurate treatment effect is leveraged. The marginal predictive prior is updated to a robust posterior by the contemporary subtrial data to inform decision making. Operating characteristics of the proposed methodology are evaluated through simulations motivated by a real basket trial in chronic diseases. The proposed methodology has advantages compared to other selected Bayesian analysis models, for (i) identifying the most commensurate source of information, and (ii) gauging the degree of borrowing from specific subtrials. Numerical results also suggest that our methodology can improve the precision of estimates and, potentially, the statistical power for hypothesis testing.
Incorporating preclinical animal data, which can be regarded as a special kind of historical data, into phase I clinical trials can improve decision making when very little about human toxicity is known. In this paper, we develop a robust hierarchica
We propose an information borrowing strategy for the design and monitoring of phase II basket trials based on the local multisource exchangeability assumption between baskets (disease types). We construct a flexible statistical design using the propo
Tissue-agnostic trials enroll patients based on their genetic biomarkers, not tumor type, in an attempt to determine if a new drug can successfully treat disease conditions based on biomarkers. The Bayesian hierarchical model (BHM) provides an attrac
A small n, sequential, multiple assignment, randomized trial (snSMART) is a small sample, two-stage design where participants receive up to two treatments sequentially, but the second treatment depends on response to the first treatment. The treatmen
Knockoffs provide a general framework for controlling the false discovery rate when performing variable selection. Much of the Knockoffs literature focuses on theoretical challenges and we recognize a need for bringing some of the current ideas into