ﻻ يوجد ملخص باللغة العربية
Integrated phase I-II clinical trial designs are efficient approaches to accelerate drug development. In cases where efficacy cannot be ascertained in a short period of time, two-stage approaches are usually employed. When different patient populations are involved across stages, it is worth of discussion about the use of efficacy data collected from both stages. In this paper, we focus on a two-stage design that aims to estimate safe dose combinations with a certain level of efficacy. In stage I, conditional escalation with overdose control (EWOC) is used to allocate successive cohorts of patients. The maximum tolerated dose (MTD) curve is estimated based on a Bayesian dose-toxicity model. In stage II, we consider an adaptive allocation of patients to drug combinations that have a high probability of being efficacious along the obtained MTD curve. A robust Bayesian hierarchical model is proposed to allow sharing of information on the efficacy parameters across stages assuming the related parameters are either exchangeable or nonexchangeable. Under the assumption of exchangeability, a random-effects distribution is specified for the main effects parameters to capture uncertainty about the between-stage differences. The proposed methodology is assessed with extensive simulations motivated by a real phase I-II drug combination trial using continuous doses.
Incorporating preclinical animal data, which can be regarded as a special kind of historical data, into phase I clinical trials can improve decision making when very little about human toxicity is known. In this paper, we develop a robust hierarchica
Interval designs are a class of phase I trial designs for which the decision of dose assignment is determined by comparing the observed toxicity rate at the current dose with a prespecified (toxicity tolerance) interval. If the observed toxicity rate
We propose an information borrowing strategy for the design and monitoring of phase II basket trials based on the local multisource exchangeability assumption between baskets (disease types). We construct a flexible statistical design using the propo
We propose a novel adaptive design for clinical trials with time-to-event outcomes and covariates (which may consist of or include biomarkers). Our method is based on the expected entropy of the posterior distribution of a proportional hazards model.
We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework