ﻻ يوجد ملخص باللغة العربية
We show experimentally and numerically that when a weak shock interacts with a finger flame in a narrow channel, an extremely efficient mechanism for deflagration to detonation transition occurs. This is demonstrated in a 19-mm-thick channel in hydrogen-air mixtures at pressures below 0.2 atm and weak shocks of Mach numbers 1.5 to 2. The mechanism relies primarily on the straining of the flame shape into an elongated alligator flame maintained by the anchoring mechanism of Gamezo in a bifurcated lambda shock due to boundary layers. The mechanism can increase the flame surface area by more than two orders of magnitude without any turbulence on the flame time scale. The resulting alligator-shaped flame is shown to saturate near the Chapman-Jouguet condition and further slowly accelerate until its burning velocity reaches the sound speed in the shocked unburned gas. At this state, the lead shock and further adiabatic compression of the gas in the induction zone gives rise to auto-ignition and very rapid transition to detonation through merging of numerous spontaneous flames from ignition spots. The entire acceleration can occur on a time scale comparable to the laminar flame time.
The present article investigates the interactions between the pilot and main flames in a novel stratified swirl burner using both experimental and numerical methods. Experiments are conducted in a test rig operating at atmospheric conditions. The sys
Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian method are performed to study the interactions between propagating shocks and dispersed evaporating water droplets. Two-way coupling for exchanges of mass, momentum, energy and
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidizer is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources a
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling