ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced DDT mechanism from shock-flame interactions in thin channels

51   0   0.0 ( 0 )
 نشر من قبل Hongxia Yang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show experimentally and numerically that when a weak shock interacts with a finger flame in a narrow channel, an extremely efficient mechanism for deflagration to detonation transition occurs. This is demonstrated in a 19-mm-thick channel in hydrogen-air mixtures at pressures below 0.2 atm and weak shocks of Mach numbers 1.5 to 2. The mechanism relies primarily on the straining of the flame shape into an elongated alligator flame maintained by the anchoring mechanism of Gamezo in a bifurcated lambda shock due to boundary layers. The mechanism can increase the flame surface area by more than two orders of magnitude without any turbulence on the flame time scale. The resulting alligator-shaped flame is shown to saturate near the Chapman-Jouguet condition and further slowly accelerate until its burning velocity reaches the sound speed in the shocked unburned gas. At this state, the lead shock and further adiabatic compression of the gas in the induction zone gives rise to auto-ignition and very rapid transition to detonation through merging of numerous spontaneous flames from ignition spots. The entire acceleration can occur on a time scale comparable to the laminar flame time.



قيم البحث

اقرأ أيضاً

70 - X. Han , D. Laera , D. Yang 2021
The present article investigates the interactions between the pilot and main flames in a novel stratified swirl burner using both experimental and numerical methods. Experiments are conducted in a test rig operating at atmospheric conditions. The sys tem is equipped with the BASIS (Beihang Axial Swirler Independently-Stratified) burner fuelled with premixed methane-air mixtures. To illustrate the interactions between the pilot and main flames, three operating modes are studied, where the burner works with: (i) only the pilot flame, (ii) only the main flame, and (iii) the stratified flame (with both the pilot and main flames). We found that: (1) In the pilot flame mode, the flame changes from V-shape to M-shape when the main stage is switched from closed to supplying a pure air stream. Strong oscillations in the M-shape flame are found due to the dilution of the main air to the pilot methane flame. (2) In the main flame mode, the main flame is lifted off from the burner if the pilot stage is supplied with air. The temperature of the primary recirculation zone drops substantially and the unsteady heat release is intensified. (3) In the stratified flame mode, unique beating oscillations exhibiting dual closely-spaced frequencies in the pressure spectrum. is found. This is observed within over narrow window of equivalence ratio combinations between the pilot and main stages. Detailed analysis of the experimental data shows that flame dynamics and thermoacoustic couplings at these two frequencies are similar to those of the unstable pilot flame and the attached main flame cases, respectively. Large Eddy Simulations (LESs) are carried out with OpenFOAM to understand the mechanisms of the time averaged flame shapes in different operating modes. Finally, a simple acoustic analysis is proposed to understand the acoustic mode nature of the beating oscillations.
Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. For isotropic (e.g. chessboard or random) textures, the Hashin-Strikman conditions further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian method are performed to study the interactions between propagating shocks and dispersed evaporating water droplets. Two-way coupling for exchanges of mass, momentum, energy and vapour species is adopted for the dilute two-phase gas-droplet flows. Interphase interactions and droplet breakup dynamics are investigated with initial droplet diameters of 30, 50, 70 and 90 {mu}m under an incident shock wave Mach number of 1.3. Novel two-phase flow phenomena are observed when droplet breakup occurs. First, droplets near the two-phase contact surface show obvious dispersed distribution because of the reflected pressure wave that propagates in the reverse direction of the leading shock. The reflected pressure wave grows stronger for larger droplets. Second, spatial oscillations of the gas phase pressure, droplet quantities (e.g., diameter and net force) and two-phase interactions (e.g., mass, momentum, and energy exchange), are observed in the post-shock region when droplet breakup occurs, which are caused by shock / droplet interactions. Third, the spatial distribution of droplets (i.e., number density, volume fraction) also shows strong oscillation in the post-shock region when droplet breakup occurs, which is caused by the oscillating force exerted on the droplets.
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidizer is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources a re not resolved and the heat release is assumed spatially uniform, is solved via conventional finite difference techniques. Second, a discrete source model, wherein the heat diffusion from individual sources is modeled via superposition of the Greens function of each source, is employed to examine the influence of the random, discrete nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert gas surrounding the reactive medium are considered as the loss mechanisms. Both cylindrical and rectangular (slab) geometries of the reactive medium are considered, and the flame speed is measured as a function of the diameter and thickness of the domains, respectively. In the continuum model with inert gas confinement, a universal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete source model, as the time scale of heat release of the sources is made small compared to the interparticle diffusion time, the geometric scaling between cylinders and slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime to propagate in thinner slabs than predicted by continuum scaling is attributed to the flame being able to exploit local fluctuations in concentration across the slab to sustain propagation. As the heat release time of the sources is increased, the discrete source model reverts back to results consistent with the continuum model. Implications of these results for experiments are discussed.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا