ﻻ يوجد ملخص باللغة العربية
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidizer is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources are not resolved and the heat release is assumed spatially uniform, is solved via conventional finite difference techniques. Second, a discrete source model, wherein the heat diffusion from individual sources is modeled via superposition of the Greens function of each source, is employed to examine the influence of the random, discrete nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert gas surrounding the reactive medium are considered as the loss mechanisms. Both cylindrical and rectangular (slab) geometries of the reactive medium are considered, and the flame speed is measured as a function of the diameter and thickness of the domains, respectively. In the continuum model with inert gas confinement, a universal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete source model, as the time scale of heat release of the sources is made small compared to the interparticle diffusion time, the geometric scaling between cylinders and slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime to propagate in thinner slabs than predicted by continuum scaling is attributed to the flame being able to exploit local fluctuations in concentration across the slab to sustain propagation. As the heat release time of the sources is increased, the discrete source model reverts back to results consistent with the continuum model. Implications of these results for experiments are discussed.
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua
The strength of the nonlinearity is measured in decaying two-dimensional turbulence, by comparing its value to that found in a Gaussian field. It is shown how the nonlinearity drops following a two-step process. First a fast relaxation is observed on
We study numerically the region of convergence of the normal form transformation for the case of the Charney-Hasagawa-Mima (CHM) equation to investigate whether certain finite amplitude effects can be described in normal coordinates. We do this by ta
Conflict between formation of a cyclonic vortex and isotropization in forced homogeneous rotating turbulence is numerically investigated. It is well known that a large rotation rate of the system induces columnar vortices to result in quasi-two-dimen