ترغب بنشر مسار تعليمي؟ اضغط هنا

Attentive Geo-Social Group Recommendation

75   0   0.0 ( 0 )
 نشر من قبل Fei Yu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Social activities play an important role in peoples daily life since they interact. For recommendations based on social activities, it is vital to have not only the activity information but also individuals social relations. Thanks to the geo-social networks and widespread use of location-aware mobile devices, massive geo-social data is now readily available for exploitation by the recommendation system. In this paper, a novel group recommendation method, called attentive geo-social group recommendation, is proposed to recommend the target user with both activity locations and a group of users that may join the activities. We present an attention mechanism to model the influence of the target user $u_T$ in candidate user groups that satisfy the social constraints. It helps to retrieve the optimal user group and activity topic candidates, as well as explains the group decision-making process. Once the user group and topics are retrieved, a novel efficient spatial query algorithm SPA-DF is employed to determine the activity location under the constraints of the given user group and activity topic candidates. The proposed method is evaluated in real-world datasets and the experimental results show that the proposed model significantly outperforms baseline methods.



قيم البحث

اقرأ أيضاً

Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e xisting DNN-based sequential recommenders commonly embed each item into a unique vector to support subsequent computations of the user interest. However, due to the potentially large number of items, the over-parameterised item embedding matrix of a sequential recommender has become a memory bottleneck for efficient deployment in resource-constrained environments, e.g., smartphones and other edge devices. Furthermore, we observe that the widely-used multi-head self-attention, though being effective in modelling sequential dependencies among items, heavily relies on redundant attention units to fully capture both global and local item-item transition patterns within a sequence. In this paper, we introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation. To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings, where each item embedding is composed by merging a group of selected base embedding vectors derived from substantially smaller embedding matrices. Meanwhile, to account for the intrinsic dynamics of each item, we further propose a temporal context-aware embedding composition scheme. Besides, we develop an innovative twin-attention network that alleviates the redundancy of the traditional multi-head self-attention while retaining full capacity for capturing long- and short-term (i.e., global and local) item dependencies. Comprehensive experiments demonstrate that LSAN significantly advances the accuracy and memory efficiency of existing sequential recommenders.
117 - Zhepeng Li , Xiao Fang , Xue Bai 2015
Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include People You May Know on Facebook and LinkedIn as well as You May Know on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem - the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods which focus solely on linkage likelihood. Specifically, our method models the dependency relationship between value, cost, linkage likelihood and utility-based link recommendation decision using a Bayesian network, predicts the probability of recommending a link with the Bayesian network, and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared to prevalent link recommendation methods from representative prior research.
Classification problems have made significant progress due to the maturity of artificial intelligence (AI). However, differentiating items from categories without noticeable boundaries is still a huge challenge for machines -- which is also crucial f or machines to be intelligent. In order to study the fuzzy concept on classification, we define and propose a globalness detection with the four-stage operational flow. We then demonstrate our framework on Facebook public pages inter-like graph with their geo-location. Our prediction algorithm achieves high precision (89%) and recall (88%) of local pages. We evaluate the results on both states and countries level, finding that the global node ratios are relatively high in those states (NY, CA) having large and international cities. Several global nodes examples have also been shown and studied in this paper. It is our hope that our results unveil the perfect value from every classification problem and provide a better understanding of global and local nodes in Online Social Networks (OSNs).
Simulations of infectious disease spread have long been used to understand how epidemics evolve and how to effectively treat them. However, comparatively little attention has been paid to understanding the fairness implications of different treatment strategies -- that is, how might such strategies distribute the expected disease burden differentially across various subgroups or communities in the population? In this work, we define the precision disease control problem -- the problem of optimally allocating vaccines in a social network in a step-by-step fashion -- and we use the ML Fairness Gym to simulate epidemic control and study it from both an efficiency and fairness perspective. We then present an exploratory analysis of several different environments and discuss the fairness implications of different treatment strategies.
The problem of predicting peoples participation in real-world events has received considerable attention as it offers valuable insights for human behavior analysis and event-related advertisement. Today social networks (e.g. Twitter) widely reflect l arge popular events where people discuss their interest with friends. Event participants usually stimulate friends to join the event which propagates a social influence in the network. In this paper, we propose to model the social influence of friends on event attendance. We consider non-geotagged posts besides structures of social groups to infer users attendance. To leverage the information on network topology we apply some of recent graph embedding techniques such as node2vec, HARP and Poincar`e. We describe the approach followed to design the feature space and feed it to a neural network. The performance evaluation is conducted using two large music festivals datasets, namely the VFestival and Creamfields. The experimental results show that our classifier outperforms the state-of-the-art baseline with 89% accuracy observed for the VFestival dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا