ﻻ يوجد ملخص باللغة العربية
In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskii-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.
In this paper, we investigate geometric properties of monotone systems by studying their isostables and basins of attraction. Isostables are boundaries of specific forward-invariant sets defined by the so-called Koopman operator, which provides a lin
We introduce a relaxed inertial forward-backward-forward (RIFBF) splitting algorithm for approaching the set of zeros of the sum of a maximally monotone operator and a single-valued monotone and Lipschitz continuous operator. This work aims to extend
In infinite-dimensional Hilbert spaces we device a class of strongly convergent primal-dual schemes for solving variational inequalities defined by a Lipschitz continuous and pseudomonote map. Our novel numerical scheme is based on Tsengs forward-bac
In this work, we analyze the global convergence property of coordinate gradient descent with random choice of coordinates and stepsizes for non-convex optimization problems. Under generic assumptions, we prove that the algorithm iterate will almost s
Monotone inclusions play an important role in studying various convex minimization problems. In this paper, we propose a forward-partial inverse-half-forward splitting (FPIHFS) algorithm for finding a zero of the sum of a maximally monotone operator,