ﻻ يوجد ملخص باللغة العربية
In infinite-dimensional Hilbert spaces we device a class of strongly convergent primal-dual schemes for solving variational inequalities defined by a Lipschitz continuous and pseudomonote map. Our novel numerical scheme is based on Tsengs forward-backward-forward scheme, which is known to display weak convergence, unless very strong global monotonicity assumptions are made on the involved operators. We provide a simple augmentation of this algorithm which is computationally cheap and still guarantees strong convergence to a minimal norm solution of the underlying problem. We provide an adaptive extension of the algorithm, freeing us from requiring knowledge of the global Lipschitz constant. We test the performance of the algorithm in the computationally challenging task to find dynamic user equilibria in traffic networks and verify that our scheme is at least competitive to state-of-the-art solvers, and in some case even improve upon them.
We introduce a relaxed inertial forward-backward-forward (RIFBF) splitting algorithm for approaching the set of zeros of the sum of a maximally monotone operator and a single-valued monotone and Lipschitz continuous operator. This work aims to extend
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator $T$ and a single-valued monotone, Lipschitz continuous, and expectation-valued operator $V$. We draw motivation from the
Monotone inclusions play an important role in studying various convex minimization problems. In this paper, we propose a forward-partial inverse-half-forward splitting (FPIHFS) algorithm for finding a zero of the sum of a maximally monotone operator,
In this paper, we consider a generalized forward-backward splitting (G-FBS) operator for solving the monotone inclusions, and analyze its nonexpansive properties in a context of arbitrary variable metric. Then, for the associated fixed-point iteratio
In this paper, we study a class of generalized monotone variational inequality (GMVI) problems whose operators are not necessarily monotone (e.g., pseudo-monotone). We present non-Euclidean extragradient (N-EG) methods for computing approximate stron