ﻻ يوجد ملخص باللغة العربية
Monotone inclusions play an important role in studying various convex minimization problems. In this paper, we propose a forward-partial inverse-half-forward splitting (FPIHFS) algorithm for finding a zero of the sum of a maximally monotone operator, a monotone Lipschitzian operator, a cocoercive operator, and a normal cone of a closed vector subspace. The FPIHFS algorithm is derived from a combination of the partial inverse method with the forward-backward-half-forward splitting algorithm. As applications, we employ the proposed algorithm to solve several composite monotone inclusion problems, which include a finite sum of maximally monotone operators and parallel-sum of operators. In particular, we obtain a primal-dual splitting algorithm for solving a composite convex minimization problem, which has wide applications in many real problems. To verify the efficiency of the proposed algorithm, we apply it to solve the Projection on Minkowski sums of convex sets problem and the generalized Heron problem. Numerical results demonstrate the effectiveness of the proposed algorithm.
We introduce a relaxed inertial forward-backward-forward (RIFBF) splitting algorithm for approaching the set of zeros of the sum of a maximally monotone operator and a single-valued monotone and Lipschitz continuous operator. This work aims to extend
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator $T$ and a single-valued monotone, Lipschitz continuous, and expectation-valued operator $V$. We draw motivation from the
In infinite-dimensional Hilbert spaces we device a class of strongly convergent primal-dual schemes for solving variational inequalities defined by a Lipschitz continuous and pseudomonote map. Our novel numerical scheme is based on Tsengs forward-bac
We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of
In this paper, we consider a generalized forward-backward splitting (G-FBS) operator for solving the monotone inclusions, and analyze its nonexpansive properties in a context of arbitrary variable metric. Then, for the associated fixed-point iteratio