ﻻ يوجد ملخص باللغة العربية
We present a theory that is a non-Fermi-liquid counterpart of the Abrikosov-Gorkov pair-breaking theory due to paramagnetic impurities in superconductors. To this end we analyze a model of interacting electrons and phonons that is a natural generalization of the Sachdev-Ye-Kitaev-model. In the limit of large numbers of degrees of freedom, the Eliashberg equations of superconductivity become exact and emerge as saddle-point equations of a field theory with fluctuating pairing fields. In its normal state the model is governed by two non-Fermi liquid fixed points, characterized by distinct universal exponents. At low temperatures a superconducting state emerges from the critical normal state. We study the role of pair-breaking on $T_{c}$, where we allow for disorder that breaks time-reversal symmetry. For small Bogoliubov quasi-particle weight, relevant for systems with strongly incoherent normal state, $T_{c}$ drops rapidly as function of the pair breaking strength and reaches a small but finite value before it vanishes at a critical pair-breaking strength via an essential singularity. The latter signals a breakdown of the emergent conformal symmetry of the non-Fermi liquid normal state.
We propose a simple solvable variant of the Sachdev-Ye-Kitaev (SYK) model which displays a quantum phase transition from a fast-scrambling non-Fermi liquid to disordered Fermi liquid. Like the canonical SYK model, our variant involves a single specie
The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge d
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
We introduce a spinful variant of the Sachdev-Ye-Kitaev model with an effective time reversal symmetry, which can be solved exactly in the limit of a large number $N$ of degrees of freedom. At low temperature, its phase diagram includes a compressibl