ﻻ يوجد ملخص باللغة العربية
We propose a simple solvable variant of the Sachdev-Ye-Kitaev (SYK) model which displays a quantum phase transition from a fast-scrambling non-Fermi liquid to disordered Fermi liquid. Like the canonical SYK model, our variant involves a single species of Majorana fermions connected by all-to-all random four-fermion interactions. The phase transition is driven by a random two-fermion term added to the Hamiltonian whose structure is inspired by proposed solid-state realizations of the SYK model. Analytic expressions for the saddle point solutions at large number $N$ of fermions are obtained and show a characteristic scale-invariant $sim |omega|^{-1/2}$ behavior of the spectral function below the transition which is replaced by a $sim |omega|^{-1/3}$ singularity exactly at the critical point. These results are confirmed by numerical solutions of the saddle point equations and discussed in the broader context of the field.
The Sachdev-Ye-Kitaev (SYK) model incorporates rich physics, ranging from exotic non-Fermi liquid states without quasiparticle excitations, to holographic duality and quantum chaos. However, its experimental realization remains a daunting challenge d
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it
We present a theory that is a non-Fermi-liquid counterpart of the Abrikosov-Gorkov pair-breaking theory due to paramagnetic impurities in superconductors. To this end we analyze a model of interacting electrons and phonons that is a natural generaliz
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
Given a class of $q$-local Hamiltonians, is it possible to find a simple variational state whose energy is a finite fraction of the ground state energy in the thermodynamic limit? Whereas product states often provide an affirmative answer in the case