ﻻ يوجد ملخص باللغة العربية
We study the potential for interaction in natural language classification. We add a limited form of interaction for intent classification, where users provide an initial query using natural language, and the system asks for additional information using binary or multi-choice questions. At each turn, our system decides between asking the most informative question or making the final classification prediction.The simplicity of the model allows for bootstrapping of the system without interaction data, instead relying on simple crowdsourcing tasks. We evaluate our approach on two domains, showing the benefit of interaction and the advantage of learning to balance between asking additional questions and making the final prediction.
In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all po
This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations including business emails, panel discussions, and work channels. Unlike open-domain and task-orie
Routing questions in Community Question Answer services (CQAs) such as Stack Exchange sites is a well-studied problem. Yet, cold-start -- a phenomena observed when a new question is posted is not well addressed by existing approaches. Additionally, c
Generating high quality question-answer pairs is a hard but meaningful task. Although previous works have achieved great results on answer-aware question generation, it is difficult to apply them into practical application in the education field. Thi