ﻻ يوجد ملخص باللغة العربية
Recent research has considered the stochastic thermodynamics of multiple interacting systems, representing the overall system as a Bayes net. I derive fluctuation theorems governing the entropy production (EP)of arbitrary sets of the systems in such a Bayes net. I also derive ``conditional fluctuation theorems, governing the distribution of EP in one set of systems conditioned on the EP of a different set of systems. I then derive thermodynamic uncertainty relations relating the EP of the overall system to the precisions of probability currents within the individual systems.
Fluctuation theorems are fundamental results in non-equilibrium thermodynamics. Considering the fluctuation theorem with respect to the entropy production and an observable, we derive a new thermodynamic uncertainty relation which also applies to non-cyclic and time-reversal non-symmetric protocols.
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and inves
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of standard Brownian motion. We first briefly review the concept of transient work FRs for stochastic dyna
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems