ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainty relations and fluctuation theorems for Bayes nets

81   0   0.0 ( 0 )
 نشر من قبل David Wolpert
 تاريخ النشر 2019
والبحث باللغة English
 تأليف David H. Wolpert




اسأل ChatGPT حول البحث

Recent research has considered the stochastic thermodynamics of multiple interacting systems, representing the overall system as a Bayes net. I derive fluctuation theorems governing the entropy production (EP)of arbitrary sets of the systems in such a Bayes net. I also derive ``conditional fluctuation theorems, governing the distribution of EP in one set of systems conditioned on the EP of a different set of systems. I then derive thermodynamic uncertainty relations relating the EP of the overall system to the precisions of probability currents within the individual systems.



قيم البحث

اقرأ أيضاً

152 - Gianluca Francica 2021
Fluctuation theorems are fundamental results in non-equilibrium thermodynamics. Considering the fluctuation theorem with respect to the entropy production and an observable, we derive a new thermodynamic uncertainty relation which also applies to non-cyclic and time-reversal non-symmetric protocols.
79 - Yunxin Zhang 2019
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i mproved bound is the same as the one obtained in [Phys.~Rev.~Lett {bf 123}, 090604 (2019)] by A.~M.~Timpanaro {it et. al.}, but the derivation here is straightforward.
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and inves tigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of standard Brownian motion. We first briefly review the concept of transient work FRs for stochastic dyna mics modeled by the ordinary Langevin equation. We then introduce three generic types of dynamics generating anomalous diffusion: Levy flights, long-time correlated Gaussian stochastic processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the work probability distributions in the simple nonequilibrium situation of a particle subject to a constant force. This allows us to check the transient FR for anomalous dynamics. We find a new form of FRs, which is intimately related to the validity of fluctuation-dissipation relations. Analogous results are obtained for a particle in a harmonic potential dragged by a constant force. We argue that these findings are important for understanding fluctuations in experimentally accessible systems. As an example, we discuss the anomalous dynamics of biological cell migration both in equilibrium and in nonequilibrium under chemical gradients.
101 - Arnab Pal , Saar Rahav 2017
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [EPL, 113, (2016)] can be recovered from this integral fluctuation theorem with the help of Jensens inequality.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا