ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust dynamics of antiferromagnetic skyrmion driven by spin-polarized current in small thin disks

96   0   0.0 ( 0 )
 نشر من قبل Rodrigo Silva
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate skyrmion configuration and dynamics in antiferromagnetic thin disks. It is shown that the skyrmion acquires oscillatory dynamics with well-defined amplitude and frequency which may be controlled on demand by the spin-polarized current. Such dynamics are robust in the sense that an interface between two half-disks cannot change the dynamics appreciably. Indeed, the skyrmion keeps its oscillatory despite crossing this interface. The way skyrmion found to do that is by modifying its core region shape so that its total energy is unaltered for several cycles.



قيم البحث

اقرأ أيضاً

We investigate vortex configuration in antiferromagnetic thin discs. It is shown that the vortex acquires oscillatory dynamics with well-defined amplitude and frequency which may be controlled on demand by an alternating spin polarized current. These findings may be useful for the emerging field of antiferromagnetic topological spintronics, once vortex dynamics may be controlled by purely electric means.
Topological spin textures can be found in both two-dimensional and three-dimensional nanostructures, which are of great importance to advanced spintronic applications. Here we report the current-induced skyrmion tube dynamics in three-dimensional syn thetic antiferromagnetic (SyAF) bilayer and multilayer nanostructures. It is found that the SyAF skyrmion tube made of thinner sublayer skyrmions is more stable during its motion, which ensures that a higher speed of the skyrmion tube can be reached effectively at larger driving current. In the SyAF multilayer with a given total thickness, the current-induced deformation of the SyAF skyrmion tube decreases with an increasing number of interfaces; namely, the rigidity of the SyAF skyrmion tube with a given thickness increases with the number of ferromagnetic (FM) layers. For the SyAF multilayer with an even number of FM layers, the skyrmion Hall effect can be eliminated when the thicknesses of all FM layers are identical. Larger damping parameter leads to smaller deformation and slower speed of the SyAF skyrmion tube. Larger fieldlike torque leads to larger deformation and a higher speed of the SyAF skyrmion tube. Our results are useful for understanding the dynamic behaviors of three-dimensional topological spin textures and may provide guidelines for building SyAF spintronic devices.
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray -field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of Neel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m/s and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties.
Magnetic skyrmion is a promising building block for developing information storage and computing devices. It can be stabilized in a ferromagnetic thin film with the Dzyaloshinskii-Moriya interaction (DMI). The moving ferromagnetic skyrmion may show t he skyrmion Hall effect, that is, the skyrmion shows a transverse shift when it is driven by a spin current. Here, we numerically and theoretically study the current-driven dynamics of a ferromagnetic nanoscale skyrmion in the presence of the anisotropic DMI, where the skyrmion has an elliptical shape. The skyrmion Hall effect of the elliptical skyrmion is investigated. It is found that the skyrmion Hall angle can be controlled by tuning the profile of elliptical skyrmion. Our results reveal the relation between the skyrmion shape and the skyrmion Hall effect, which could be useful for building skyrmion-based spintronic devices with preferred skyrmion Hall angle. Also, our results provide a method for the minimization of skyrmion Hall angle for applications based on in-line motion of skyrmions.
Spin pumping is a widely recognized method to generate the spin current in the spintronics, which is acknowledged as a fundamentally dynamic process equivalent to the spin-transfer torque. In this work, we theoretically verify that the oscillating sp in current can be pumped from the microwave-motivated breathing skyrmion. The skyrmion spin pumping can be excited by a relatively low frequency compared with the ferromagnetic resonance (FMR) and the current density is larger than the ordinary FMR spin pumping. Based on the skyrmion spin pumping, we build a high reading-speed racetrack memory model whose reading speed is an order of magnitude higher than the SOT (spin-orbit torque) /STT (spin-transfer torque) skyrmion racetrack. Our work explored the spin pumping phenomenon in the skyrmion, and it may contribute to the applications of the skyrmion-based device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا