ﻻ يوجد ملخص باللغة العربية
In many biological situations, a species arriving from a remote source diffuses in a domain confined between two parallel surfaces until it finds a binding partner. Since such a geometric shape falls in between two- and three-dimensional settings, the behavior of the macroscopic reaction rate and its dependence on geometric parameters are not yet understood. Modeling the geometric setup by a capped cylinder with a concentric disk-like reactive region on one of the lateral surfaces, we provide an exact semi-analytical solution of the steady-state diffusion equation and compute the diffusive flux onto the reactive region. We explore the dependence of the macroscopic reaction rate on the geometric parameters and derive asymptotic results in several limits. Using the self-consistent approximation, we also obtain a simple fully explicit formula for the reaction rate that exhibits a transition from two-dimensional to three-dimensional behavior as the separation distance between lateral surfaces increases. Biological implications of these results are discussed.
We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rat
A self-consistent equation to derive a discreteness-induced stochastic steady state is presented for reaction-diffusion systems. For this formalism, we use the so-called Kuramoto length, a typical distance over which a molecule diffuses in its lifeti
Purpose: Diffusion-weighted steady-state free precession (DW-SSFP) is shown to provide a means to probe non-Gaussian diffusion through manipulation of the flip angle. A framework is presented to define an effective b-value in DW-SSFP. Theory: The DW-
Many experiments in recent years have reported that, when exposed to their corresponding substrate, catalytic enzymes undergo enhanced diffusion as well as chemotaxis (biased motion in the direction of a substrate gradient). Among other possible mech
The reduced 1D Poisson-Nernst-Planck (PNP) model of artificial nanopores in the presence of a permanent charge on the channel wall is studied. More specifically, we consider the limit where the channel length exceed much the Debye screening length an