ترغب بنشر مسار تعليمي؟ اضغط هنا

A singular perturbation approach to the steady-state 1D Poisson-Nernst-Planck modeling

611   0   0.0 ( 0 )
 نشر من قبل Ilona Kosi\\'nska
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. D. Kosinska




اسأل ChatGPT حول البحث

The reduced 1D Poisson-Nernst-Planck (PNP) model of artificial nanopores in the presence of a permanent charge on the channel wall is studied. More specifically, we consider the limit where the channel length exceed much the Debye screening length and channels charge is sufficiently small. Ion transport is described by the nonequillibrium steady-state solution of the PNP system within a singular perturbation treatment. The quantities, 1/lambda -- the ratio of the Debye length to a characteristic length scale and epsilon -- the scaled intrinsic charge density, serve as the singular and the regular perturbation parameters, respectively. The role of the boundary conditions is discussed. A comparison between numerics and the analytical results of the singular perturbation theory is presented.



قيم البحث

اقرأ أيضاً

In this paper, we develop an adaptive finite element method for the nonlinear steady-state Poisson-Nernst-Planck equations, where the spatial adaptivity for geometrical singularities and boundary layer effects are mainly considered. As a key contribu tion, the steady-state Poisson-Nernst-Planck equations are studied systematically and rigorous analysis for a residual-based a posteriori error estimate of the nonlinear system is presented. With the help of Schauder fixed point theorem, we show the solution existence and uniqueness of the linearized system derived by taking $G-$derivatives of the nonlinear system, followed by the proof of the relationship between the error of solution and the a posteriori error estimator $eta$. Numerical experiments are given to validate the efficiency of the a posteriori error estimator and demonstrate the expected rate of convergence. In the further tests, adaptive mesh refinements for geometrical singularities and boundary layer effects are successfully observed.
394 - I. D. Kosinska 2008
Ion transport in biological and synthetic nanochannels is characterized by phenomena such as ion current fluctuations and rectification. Recently, it has been demonstrated that nanofabricated synthetic pores can mimic transport properties of biologic al ion channels [P. Yu. Apel, {it et al.}, Nucl. Instr. Meth. B {bf 184}, 337 (2001); Z. Siwy, {it et al.}, Europhys. Lett. {bf 60}, 349 (2002)]. Here, the ion current rectification is studied within a reduced 1D Poisson-Nernst-Planck (PNP) model of synthetic nanopores. A conical channel of a few $mathrm{nm}$ to a few hundred of nm in diameter, and of few $mu$m long is considered in the limit where the channel length considerably exceeds the Debye screening length. The rigid channel wall is assumed to be weakly charged. A one-dimensional reduction of the three-dimensional problem in terms of corresponding entropic effects is put forward. The ion transport is described by the non-equilibrium steady-state solution of the 1D Poisson-Nernst-Planck system within a singular perturbation treatment. An analytic formula for the approximate rectification current in the lowest order perturbation theory is derived. A detailed comparison between numerical results and the singular perturbation theory is presented. The crucial importance of the asymmetry in the potential jumps at the pore ends on the rectification effect is demonstrated. This so constructed 1D theory is shown to describe well the experimental data in the regime of small-to-moderate electric currents.
In many biological situations, a species arriving from a remote source diffuses in a domain confined between two parallel surfaces until it finds a binding partner. Since such a geometric shape falls in between two- and three-dimensional settings, th e behavior of the macroscopic reaction rate and its dependence on geometric parameters are not yet understood. Modeling the geometric setup by a capped cylinder with a concentric disk-like reactive region on one of the lateral surfaces, we provide an exact semi-analytical solution of the steady-state diffusion equation and compute the diffusive flux onto the reactive region. We explore the dependence of the macroscopic reaction rate on the geometric parameters and derive asymptotic results in several limits. Using the self-consistent approximation, we also obtain a simple fully explicit formula for the reaction rate that exhibits a transition from two-dimensional to three-dimensional behavior as the separation distance between lateral surfaces increases. Biological implications of these results are discussed.
106 - Chiu Fan Lee 2011
In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles is beyond a critical density. Starting with a reduced model for collective motion, we determin e how the critical density depends on the form of the initial perturbation. Specifically, we employ a renormalization-group improved perturbative method to analyze the model equations, and show analytically, up to first order in the perturbation parameter, how the critical density is modified by the strength of the initial angular perturbation in the system.
We develop a modified Poisson-Nernst-Planck model which includes both the long-range Coulomb and short-range hard-sphere correlations in its free energy functional such that the model can accurately describe the ion transport in complex environment a nd under a nanoscale confinement. The Coulomb correlation including the dielectric polarization is treated by solving a generalized Debye-Huckel equation which is a Greens function equation with the correlation energy of a test ion described by the self Greens function. The hard-sphere correlation is modeled through the modified fundamental measure theory. The resulting model is available for problems beyond the mean-field theory such as problems with variable dielectric media, multivalent ions, and strong surface charge density. We solve the generalized Debye-Huckel equation by the Wentzel-Kramers-Brillouin approximation, and study the electrolytes between two parallel dielectric surfaces. In comparison to other modified models, the new model is shown more accurate in agreement with particle-based simulations and capturing the physical properties of ionic structures near interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا