ﻻ يوجد ملخص باللغة العربية
In this paper, we prove the uniform nonlinear structural stability of Hagen-Poiseuille flows with arbitrary large fluxes in the axisymmetric case. This uniform nonlinear structural stability is the first step to study Liouville type theorem for steady solution of Navier-Stokes system in a pipe, which may play an important role in proving the existence of solutions for the Lerays problem, the existence of solutions of steady Navier-Stokes system with arbitrary flux in a general nozzle. A key step to establish nonlinear structural stability is the a priori estimate for the associated linearized problem for Navier-Stokes system around Hagen-Poiseuille flows. The linear structural stability is established as a consequence of elaborate analysis for the governing equation for the partial Fourier transform of the stream function. The uniform estimates are obtained based on the analysis for the solutions with different fluxes and frequencies. One of the most involved cases is to analyze the solutions with large flux and intermediate frequency, where the boundary layer analysis for the solutions plays a crucial role.
In this paper, we prove the uniform nonlinear structural stability of Poiseuille flows with arbitrarily large flux for the Navier-Stokes system in a two dimensional periodic strip when the period is not large. The key point is to establish the a prio
In this paper, we prove the linear stability of the pipe Poiseuille flow for general perturbations at high Reynolds number regime. This is a long-standing problem since the experiments of Reynolds in 1883. Our work lays a foundation for the theoretic
We study the behavior of solutions to the incompressible $2d$ Euler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier-Stokes problems. We exhibit a large
Modal stability analysis provides information about the long-time growth or decay of small-amplitude perturbations around a steady-state solution of a dynamical system. In fluid flows, exponentially growing perturbations can initiate departure from l
We show that self-similar solutions for the mean curvature flow, surface diffusion and Willmore flow of entire graphs are stable upon perturbations of initial data with small Lipschitz norm. Roughly speaking, the perturbed solutions are asymptoticall