ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear stability of pipe Poiseuille flow at high Reynolds number regime

275   0   0.0 ( 0 )
 نشر من قبل Zhifei Zhang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we prove the linear stability of the pipe Poiseuille flow for general perturbations at high Reynolds number regime. This is a long-standing problem since the experiments of Reynolds in 1883. Our work lays a foundation for the theoretical analysis of hydrodynamic stability of pipe flow, which is one of the oldest yet unsolved problems of fundamental fluid dynamics.

قيم البحث

اقرأ أيضاً

214 - Yun Wang , Chunjing Xie 2019
In this paper, we prove the uniform nonlinear structural stability of Hagen-Poiseuille flows with arbitrary large fluxes in the axisymmetric case. This uniform nonlinear structural stability is the first step to study Liouville type theorem for stead y solution of Navier-Stokes system in a pipe, which may play an important role in proving the existence of solutions for the Lerays problem, the existence of solutions of steady Navier-Stokes system with arbitrary flux in a general nozzle. A key step to establish nonlinear structural stability is the a priori estimate for the associated linearized problem for Navier-Stokes system around Hagen-Poiseuille flows. The linear structural stability is established as a consequence of elaborate analysis for the governing equation for the partial Fourier transform of the stream function. The uniform estimates are obtained based on the analysis for the solutions with different fluxes and frequencies. One of the most involved cases is to analyze the solutions with large flux and intermediate frequency, where the boundary layer analysis for the solutions plays a crucial role.
A new approach to turbulence simulation, based on a combination of large-eddy simulation (LES) for the whole flow and an array of non-space-filling quasi-direct numerical simulations (QDNS), which sample the response of near-wall turbulence to large- scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse-grid LES, with the equivalent of wall functions supplied by the near-wall sampled QDNS. Two cases are tested, at friction Reynolds number Re$_tau$=4200 and 20,000. The total grid node count for the first case is less than half a million and less than two million for the second case, with the calculations only requiring a desktop computer. A good agreement with published DNS is found at Re$_tau$=4200, both in terms of the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near-wall turbulence levels due to a modulation of near-wall streaks by large-scale structures. The trend continues at Re$_tau$=20,000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES-QDNS coupling strategy and sub-grid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.
83 - M. Leoni , T.B. Liverpool 2012
We introduce a generic model of weakly non-linear self-sustained oscillator as a simplified tool to study synchronisation in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interact ions on the slow dynamics of two oscillators and show that they can lead to synchronisation. Furthermore, we find that synchronisation is strongly enhanced when the oscillators are non-isochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Non-isochronity is determined by a nonlinear coupling $alpha$ being non-zero. We find that its ($alpha$) sign determines if they synchronise in- or anti-phase. We then study an infinite array of oscillators in the long wavelength limit, in presence of noise. For $alpha > 0$, hydrodynamic interactions can lead to a homogeneous synchronised state. Numerical simulations for a finite number of oscillators confirm this and, when $alpha <0$, show the propagation of waves, reminiscent of metachronal coordination.
Emulsions are omnipresent in the food industry, health care, and chemical synthesis. In this Letter the dynamics of meta-stable oil-water emulsions in highly turbulent ($10^{11}leqtext{Ta}leq 3times 10^{13}$) Taylor--Couette flow, far from equilibriu m, is investigated. By varying the oil-in-water void fraction, catastrophic phase inversion between oil-in-water and water-in-oil emulsions can be triggered, changing the morphology, including droplet sizes, and rheological properties of the mixture, dramatically. The manifestation of these different states is exemplified by combining global torque measurements and local in-situ laser induced fluorescence (LIF) microscopy imaging. Despite the turbulent state of the flow and the dynamic equilibrium of the oil-water mixture, the global torque response of the system is found to be as if the fluid were Newtonian, and the effective viscosity of the mixture was found to be several times bigger or smaller than either of its constituents.
The Navier--Stokes equations arise naturally as a result of Ehrenfests coarse-graining in phase space after a period of free-flight dynamics. This point of view allows for a very flexible approach to the simulation of fluid flow for high-Reynolds num ber. We construct regularisers for lattice Boltzmann computational models. These regularisers are based on Ehrenfests coarse-graining idea and could be applied to schemes with either entropic or non-entropic quasiequilibria. We give a numerical scheme which gives good results for the standard test cases of the shock tube and the flow past a square cylinder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا