ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary Structures near the Kolmogorov and Poiseuille Flows in the 2d Euler Equations

145   0   0.0 ( 0 )
 نشر من قبل Klaus Widmayer
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the behavior of solutions to the incompressible $2d$ Euler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier-Stokes problems. We exhibit a large family of new, non-trivial stationary states of analytic regularity, that are arbitrarily close to the Kolmogorov flow on the square torus $mathbb{T}^2$. This situation contrasts strongly with the setting of some monotone shear flows, such as the Couette flow: in both cases the linearized problem exhibits an inviscid damping mechanism that leads to relaxation of perturbations of the base flows back to nearby shear flows. While this effect persists nonlinearly for suitably small and regular perturbations of some monotone shear flows, for the Kolmogorov flow our result shows that this is not possible. Our construction of these stationary states builds on a degeneracy in the global structure of the Kolmogorov flow on $mathbb{T}^2$. In this regard both the Kolmogorov flow on a rectangular torus and the Poiseuille flow in a channel are very different, and we show that the only stationary states near them must indeed be shears, even in relatively low regularity $H^3$ resp. $H^{5+}$. In addition, we show that this behavior is mirrored closely in the related Navier-Stokes settings: the linearized problems near the Poiseuille and Kolmogorov flows both exhibit an enhanced rate of dissipation. Previous work by us and others shows that this effect survives in the full, nonlinear problem near the Poiseuille flow and near the Kolmogorov flow on rectangular tori, provided that the perturbations lie below a certain threshold. However, we show here that the corresponding result cannot hold near the Kolmogorov flow on $mathbb{T}^2$.



قيم البحث

اقرأ أيضاً

We consider solutions to the 2d Navier-Stokes equations on $mathbb{T}timesmathbb{R}$ close to the Poiseuille flow, with small viscosity $ u>0$. Our first result concerns a semigroup estimate for the linearized problem. Here we show that the $x$-depen dent modes of linear solutions decay on a time-scale proportional to $ u^{-1/2}|log u|$. This effect is often referred to as emph{enhanced dissipation} or emph{metastability} since it gives a much faster decay than the regular dissipative time-scale $ u^{-1}$ (this is also the time-scale on which the $x$-independent mode naturally decays). We achieve this using an adaptation of the method of hypocoercivity. Our second result concerns the full nonlinear equations. We show that when the perturbation from the Poiseuille flow is initially of size at most $ u^{3/4+}$, then it remains so for all time. Moreover, the enhanced dissipation also persists in this scenario, so that the $x$-dependent modes of the solution are dissipated on a time scale of order $ u^{-1/2}|log u|$. This transition threshold is established by a bootstrap argument using the semigroup estimate and a careful analysis of the nonlinear term in order to deal with the unboundedness of the domain and the Poiseuille flow itself.
We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1 },ldots,x_{0,m})$ of the Kirchhoff-Routh function defined on $Omega^m$ corresponding to $(kappa_1,ldots, kappa_m)$, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and are perturbations of small circles centered near $x_i$, $i=1,ldots,m$. The proof is accomplished via the implicit function theorem with suitable choice of function spaces. This seems to be the first nontrivial result on the existence of stationary vortex sheets in domains.
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
76 - Francois Hamel 2019
In this paper, we consider steady Euler flows in two-dimensional bounded annuli, as well as in exterior circular domains, in punctured disks and in the punctured plane. We always assume rigid wall boundary conditions. We prove that, if the flow does not have any stagnation point, and if it satisfies further conditions at infinity in the case of an exterior domain or at the center in the case of a punctured disk or the punctured plane, then the flow is circular, namely the streamlines are concentric circles. In other words, the flow then inherits the radial symmetry of the domain. The proofs are based on the study of the trajectories of the flow and the orthogonal trajectories of the gradient of the stream function, which is shown to satisfy a semilinear elliptic equation in the whole domain. In exterior or punctured domains, the method of moving planes is applied to some almost circular domains located between some streamlines of the flow, and the radial symmetry of the stream function is shown by a limiting argument. The paper also contains two Serrin-type results in simply or doubly connected bounded domains with free boundaries. Here, the flows are further assumed to have constant norm on each connected component of the boundary and the domains are then proved to be disks or annuli.
142 - Wendong Wang , Yuzhao Wang 2018
This note is devoted to investigating Liouville type properties of the two dimensional stationary incompressible Magnetohydrodynamics equations. More precisely, under smallness conditions only on the magnetic field, we show that there are no non-triv ial solutions to MHD equations either the Dirichlet integral or some $L^p$ norm of the velocity-magnetic fields are finite. In particular, these results generalize the corresponding Liouville type properties for the 2D Navier-Stokes equations, such as Gilbarg-Weinberger cite{GW1978} and Koch-Nadirashvili-Seregin-Sverak cite{KNSS}, to the MHD setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا