ترغب بنشر مسار تعليمي؟ اضغط هنا

Collapse of the general circulation in shortwave-absorbing atmospheres: an idealized model study

275   0   0.0 ( 0 )
 نشر من قبل Wanying Kang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The response of the general circulation in a dry atmosphere to various atmospheric shortwave absorptivities is investigated in a three-dimensional general circulation model with grey radiation. Shortwave absorption in the atmosphere reduces the incoming radiation reaching the surface but warms the upper atmosphere, significantly shifting the habitable zone toward the star. The strong stratification under high shortwave absorptivity suppresses the Hadley cell in a manner that matches previous Hadley cell scalings. General circulation changes may be observable through cloud coverage and superrotation. The equatorial superrotation in the upper atmosphere strengthens with the shortwave opacity, as predicted based on the gradient wind of the radiative-convective equilibrium profile. There is a sudden drop of equatorial superrotation at very low shortwave opacity. This is because the Hadley cell in those cases are strong enough to fill the entire troposphere with zero momentum air from the surface. A diurnal cycle (westward motion of substellar point relative to the planet) leads to acceleration of the equatorial westerlies in general, through the enhancement of the equatorward eddy momentum transport, but the response is not completely monotonic, perhaps due to the resonance of tropical waves and the diurnal forcing.



قيم البحث

اقرأ أيضاً

Planets with high obliquity receive more radiation in the polar regions than at low latitudes, and thus, assuming an ocean-covered surface with sufficiently high heat capacity, their meridional temperature gradient was shown to be reversed for the en tire year. The objective of this work is to investigate the drastically different general circulation of such planets, with an emphasis on the tropical Hadley circulation and the mid-latitude baroclinic eddy structure. We use a 3D dry dynamic core model, accompanied by an eddy-free configuration and a generalized 2D Eady model. When the meridional temperature gradient $T_y$ is reversed, the Hadley cell remains in the same direction, because the surface wind pattern and hence the associated meridional Ekman transport are not changed, as required by the baroclinic eddy momentum transport. The Hadley cell under reversed $T_y$ also becomes much shallower and weaker, even when the magnitude of the gradient is the same as in the normal case. The shallowness is due to the bottom-heavy structure of the baroclinic eddies in the reverse case, and the weakness is due to the weak wave activity. We propose a new mechanism to explain the mid-latitude eddy structure for both cases, and verify it using the generalized Eady model. With seasonal variations included, the annual mean circulation resembles that under perpetual annual mean setup. Approaching the solstices, a strong cross-equator Hadley cell forms in both cases, and about 2/3 of the Hadley circulation is driven by eddies, as shown by eddy-free simulations and using a decomposition of the Hadley cell.
Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planet ary systems a twin of the solar system. Such diversity on many scales and structural levels requires fundamental theoretical approaches. Large efforts are underway to develop individual aspects of exoplanet sciences, like exoplanet atmospheres, cloud formation, disk chemistry, planet system dynamics, mantle convection, mass loss of planetary atmospheres. The following challenges need to be addressed in tandem with observational efforts. They provide the opportunity to progress our understanding of exoplanets and their atmospheres by exploring our models as virtual laboratories to fill gaps in observational data from different instruments and missions, and taken at different instances of times: Challenge a) Building complex models based on theoretical rigour that aim to understand the interactions of atmospheric processes, to treat cloud formation and its feedback onto the gas-phase chemistry and the energy budget of the planetary atmosphere moving away from solar-system inspired parameterisations. Challenge b) Enabling cloud modelling based on fundamental physio-chemical insights in order to be applicable to the large and unexplored chemical, radiative and thermodynamical parameter range of exoplanets in the universe. Challenge b) will be explored in this chapter of the book ExoFrontiers.
Context. Atmospheric superrotating flows at the equator are an almost ubiquitous result of simulations of hot Jupiters, and a theory explaining how this zonally coherent flow reaches an equilibrium has been developed in the literature. However, this understanding relies on the existence of either an initial superrotating or a sheared flow, coupled with a slow evolution such that a linear steady state can be reached. Aims. A consistent physical understanding of superrotation is needed for arbitrary drag and radiative timescales, and the relevance of considering linear steady states needs to be assessed. Methods. We obtain an analytical expression for the structure, frequency and decay rate of propagating waves in hot Jupiter atmospheres around a state at rest in the 2D shallow water beta plane limit. We solve this expression numerically and confirm the robustness of our results with a 3D linear wave algorithm. We then compare with 3D simulations of hot Jupiter atmospheres and study the non linear momentum fluxes. Results. We show that under strong day night heating the dynamics does not transit through a linear steady state when starting from an initial atmosphere in solid body rotation. We further show that non linear effects favour the initial spin up of superrotation and that the acceleration due to the vertical component of the eddy momentum flux is critical to the initial development of superrotation. Conclusions. Overall, we describe the initial phases of the acceleration of superrotation, including consideration of differing radiative and drag timescales, and conclude that eddy-momentum driven superrotating equatorial jets are robust, physical phenomena in simulations of hot Jupiter atmospheres.
Observations of scattered light and thermal emission from hot Jupiter exoplanets have suggested the presence of inhomogeneous aerosols in their atmospheres. 3D general circulation models (GCMs) that attempt to model the effects of aerosols have been developed to understand the physical processes that underlie their dynamical structures. In this work, we investigate how different approaches to aerosol modeling in GCMs of hot Jupiters affect high-resolution thermal emission spectra throughout the duration of the planets orbit. Using results from a GCM with temperature-dependent cloud formation, we calculate spectra of a representative hot Jupiter with different assumptions regarding the vertical extent and thickness of clouds. We then compare these spectra to models in which clouds are absent or simply post-processed (i.e., added subsequently to the completed clear model). We show that the temperature-dependent treatment of clouds in the GCM produces high-resolution emission spectra that are markedly different from the clear and post-processed cases -- both in the continuum flux levels and line profiles -- and that increasing the vertical extent and thickness of clouds leads to bigger changes in these features. We evaluate the net Doppler shifts of the spectra induced by global winds and the planets rotation and show that they are strongly phase-dependent, especially for models with thicker and more extended clouds. This work further demonstrates the importance of radiative feedback in cloudy atmospheric models of hot Jupiters, as this can have a significant impact on interpreting spectroscopic observations of exoplanet atmospheres.
The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the New tonian gravitational acceleration, on its atmosphere and climate. We first demonstrate that if the atmosphere obeys the hydrostatic primitive equations, which are a very good approximation for most terrestrial atmospheres, and if the radiative forcing is unaltered, changes in gravity have no effect at all on the circulation except for a vertical rescaling. That is to say, the effects of gravity may be completely scaled away and the circulation is unaltered. However, if the atmosphere contains a dilute condensible that is radiatively active, such as water or methane, then an increase in gravity will generally lead to a cooling of the planet because the total path length of the condensible will be reduced as gravity increases, leading to a reduction in the greenhouse effect. Furthermore, the specific humidity will decrease, leading to changes in the moist adiabatic lapse rate, in the equator-to-pole heat transport, and in the surface energy balance because of changes in the sensible and latent fluxes. These effects are all demonstrated both by theoretical arguments and by numerical simulations with moist and dry general circulation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا