ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling ultrafast non-equilibrium carrier dynamics and relaxation processes upon irradiation of hexagonal Silicon-Carbide with femtosecond laser pulses

54   0   0.0 ( 0 )
 نشر من قبل George Tsibidis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical investigation of the yet unexplored dynamics of the produced excited carriers upon irradiation of hexagonal Silicon Carbide (6H-SiC) with femtosecond laser pulses. To describe the ultrafast behaviour of laser induced out-of-equilibrium carriers, a real time simulation based on Density Functional Theory (DFT) methodology is used to compute both the hot carrier dynamics and transient change of the optical properties. A Two-Temperature model (TTM) is also employed to derive the relaxation processes for laser pulses of wavelength 401 nm, duration 50 fs at normal incidence irradiation which indicate that surface damage on the material occurs for fluence ~1.88 Jcm-2. This approach of linking, for the first time, real time calculations, transient optical properties and TTM modelling, has strong implications for understanding both the ultrafast dynamics and relaxation processes and providing a precise investigation of the impact of hot carrier population in surface damage mechanisms in solids.



قيم البحث

اقرأ أيضاً

A theoretical investigation of the ultrafast processes and dynamics of the excited carriers upon irradiation of GaAs with femtosecond (fs) pulsed lasers is performed in conditions that induce material damage and eventually surface modification of the heated solid. A parametric study is followed to correlate the produced transient carrier density with the damage threshold for various pulse duration values {tau}p (it increases as ~ at relatively small values of {tau}p while it drops for pulse durations of the order of some picoseconds) based on the investigation of the fundamental multiscale physical processes following fs-laser irradiation. Moreover, fluence values for which the originally semiconducting material demonstrates a metallic behaviour are estimated. It is shown that a sufficient number of carriers in the conduction band are produced to excite Surface Plasmon (SP) waves that upon coupling with the incident beam and a fluid-based surface modification mechanism lead to the formation of sub-wavelength periodic structures orientated perpendicularly to the laser beam polarization. Experimental results for the damage threshold and the frequencies of induced periodic structures show a good agreement with the theoretical predictions.
The relaxation dynamics of hot carriers in silicon (100) is studied via a novel holistic approach based on phase-resolved transient absorption spectroscopy with few-cycle optical pulses. After excitation by a sub-5 fs light pulse, strong electron-pho non coupling leads to an ultrafast momentum relaxation with time constant of 10 fs. The thermalization of the hot carriers occurs on a time constant of 150 fs, visible in the temporal evolution of the collision time as extracted from the Drude model. We find an increase of the collision time from 3 fs for the shortest timescales with a saturation at approximately 18 fs. Moreover, the optical effective mass of the hot carrier ensemble evolves on ultrafast timescales as well, with a bi-exponential decrease from 0.7 $m_e$ to about 0.125 $m_e$ and time constants of 4 fs and 58 fs. The presented information on the electron mass dynamics as well as the momentum-, energy-, and collision-scattering times with unprecedented time resolution is important for all hot carrier optoelectronic devices.
426 - B. Ziaja , H. Wabnitz , E. Weckert 2007
The kinetic Boltzmann equation is used to model the non-equilibrium ionization phase that initiates the evolution of atomic clusters irradiated with single pulses of intense vacuum ultraviolet radiation. The duration of the pulses is < 50 fs and thei r intensity in the focus is < 10^{14} W/cm^2. This statistical model includes various processes contributing to the sample dynamics at this particular radiation wavelength, and is computationally efficient also for large samples. Two effects are investigated in detail: the impact of the electron heating rate and the effect of the plasma environment on the overall ionization dynamics. Results on the maximal ion charge, the average ion charge and the average energy absorbed per atom estimated with this model are compared to the experimental data obtained at the free-electron-laser facility FLASH at DESY. Our analysis confirms that the dynamics within the irradiated samples is complex, and the total ionization rate is the resultant of various processes. In particular, within the theoretical framework defined in this model the high charge states as observed in experiment cannot be obtained with the standard heating rates derived with Coulomb atomic potentials. Such high charge states can be created with the enhanced heating rates derived with the effective atomic potentials. The modification of ionization potentials by plasma environment is found to have less effect on the ionization dynamics than the electron heating rate. We believe that our results are a step towards better understanding the dynamics within the samples irradiated with intense VUV radiation.
197 - C. Kasper , D. Klenkert , Z. Shang 2019
Irradiation-induced lattice defects in silicon carbide (SiC) have already exceeded their previous reputation as purely performance-inhibiting. With their remarkable quantum properties, such as long room-temperature spin coherence and the possibility of downscaling to single-photon source level, they have proven to be promising candidates for a multitude of quantum information applications. One of the most crucial parameters of any quantum system is how long its quantum coherence can be preserved. By using the pulsed optically detected magnetic resonance (ODMR) technique, we investigate the spin-lattice relaxation time ($T_1$) and spin coherence time ($T_2$) of silicon vacancies in 4H-SiC created by neutron, electron and proton irradiation in a broad range of fluences. We also examine the effect of irradiation energy and sample annealing. We establish a robustness of the $T_1$ time against all types of irradiation and reveal a universal scaling of the $T_2$ time with the emitter density. Our results can be used to optimize the coherence properties of silicon vacancy qubits in SiC for specific tasks.
370 - Fabio Caruso , Dino Novko , 2019
Time- and angle-resolved photoemission spectroscopy (tr-ARPES) constitutes a powerful tool to inspect the dynamics and thermalization of hot carriers. The identification of the processes that drive the dynamics, however, is challenging even for the s implest systems owing to the coexistence of several relaxation mechanisms. Here, we devise a Greens function formalism for predicting the tr-ARPES spectral function and establish the origin of carrier thermalization entirely from first principles. The predictive power of this approach is demonstrated by an excellent agreement with experiments for graphene over time scales ranging from a few tens of femtoseconds up to several picoseconds. Our work provides compelling evidence of a non-equilibrium dynamics dominated by the establishment of a hot-phonon regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا