ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast hot carrier relaxation in silicon monitored by phase-resolved transient absorption spectroscopy

399   0   0.0 ( 0 )
 نشر من قبل Hristo Iglev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relaxation dynamics of hot carriers in silicon (100) is studied via a novel holistic approach based on phase-resolved transient absorption spectroscopy with few-cycle optical pulses. After excitation by a sub-5 fs light pulse, strong electron-phonon coupling leads to an ultrafast momentum relaxation with time constant of 10 fs. The thermalization of the hot carriers occurs on a time constant of 150 fs, visible in the temporal evolution of the collision time as extracted from the Drude model. We find an increase of the collision time from 3 fs for the shortest timescales with a saturation at approximately 18 fs. Moreover, the optical effective mass of the hot carrier ensemble evolves on ultrafast timescales as well, with a bi-exponential decrease from 0.7 $m_e$ to about 0.125 $m_e$ and time constants of 4 fs and 58 fs. The presented information on the electron mass dynamics as well as the momentum-, energy-, and collision-scattering times with unprecedented time resolution is important for all hot carrier optoelectronic devices.



قيم البحث

اقرأ أيضاً

Femtosecond carrier recombination in PbI2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafast electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. The XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10-9 cm3/s.
Silicon nanoparticles have the promise to surpass the theoretical efficiency limit of single-junction silicon photovoltaics by the creation of a phonon bottleneck, a theorized slowing of the cooling rate of hot optical phonons that in turn reduces th e cooling rate of hot carriers in the material. To verify the presence of a phonon bottleneck in silicon nanoparticles requires simultaneous resolution of electronic and structural changes at short timescales. Here, extreme ultraviolet transient absorption spectroscopy is used to observe the excited state electronic and lattice dynamics in polycrystalline silicon nanoparticles following 800 nm photoexcitation, which excites carriers with $0.35 pm 0.03$ eV excess energy above the ${Delta}_1$ conduction band minimum. The nanoparticles have nominal 100 nm diameters with crystalline grain sized of about ~16 nm. The extracted carrier-phonon and phonon-phonon relaxation times of the nanoparticles are compared to those for a silicon (100) single crystal thin film at similar carrier densities ($2$ x $10^{19} cm^{-3}$ for the nanoparticles and $6$ x $10^{19} cm^{-3}$ for the thin film). The measured carrier-phonon and phonon-phonon scattering lifetimes for the polycrystalline nanoparticles are $870 pm 40$ fs and $17.5 pm 0.3$ ps, respectively, versus $195 pm 20$ fs and $8.1 pm 0.2$ ps, respectively, for the silicon thin film. The reduced scattering rates observed in the nanoparticles are consistent with the phonon bottleneck hypothesis.
$mathrm{MoTe_2}$ has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points in the ele ctron dynamics above the Fermi level $mathrm{E_F}$, by comparing the ultrafast response of $mathrm{MoTe_2}$ in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound $mathrm{WTe_2}$ is slower and temperature-independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of $mathrm{MoTe_2}$.
Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M$_{2,3}$ edge. It is observed that the core-level absorption lineshape of photoex cited nickel can be described by a Gaussian broadening ($sigma$) and a red shift ($omega_{s}$) of the ground state absorption spectrum. Theory predicts, and the experimental results verify that after initial rapid carrier thermalization, the electron temperature increase ($Delta T$) is linearly proportional to the Gaussian broadening factor $sigma$, providing quantitative real-time tracking of the relaxation of the electron temperature. Measurements reveal an electron cooling time for 50 nm thick polycrystalline nickel films of 640$pm$80 fs. With hot thermalized carriers, the spectral red shift exhibits a power-law relationship with the change in electron temperature of $omega_{s}proptoDelta T^{1.5}$. Rapid electron thermalization via carrier-carrier scattering accompanies and follows the nominal 4 fs photoexcitation pulse until the carriers reach a quasi-thermal equilibrium. Entwined with a <6 fs instrument response function, carrier thermalization times ranging from 34 fs to 13 fs are estimated from experimental data acquired at different pump fluences and it is observed that the electron thermalization time decreases with increasing pump fluence. The study provides an initial example of measuring electron temperature and thermalization in metals in real time with XUV light, and it lays a foundation for further investigation of photoinduced phase transitions and carrier transport in metals with core-level absorption spectroscopy.
Few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy, performed with optical 500-1000 nm supercontinuum and broadband XUV pulses (30-50 eV), simultaneously probes dynamics of photoexcited carriers in WS$_{2}$ at the W O$_3$ edg e (37-45 eV) and carrier-induced modifications of core-exciton absorption at the W N$_{6,7}$ edge (32-37 eV). Access to continuous core-to-conduction band absorption features and discrete core-exciton transitions in the same XUV spectral region in a semiconductor provides a novel means to investigate the effect of carrier excitation on core-exciton dynamics. The core-level transient absorption spectra, measured with either pulse arriving first to explore both core-level and valence carrier dynamics, reveal that core-exciton transitions are strongly influenced by the photoexcited carriers. A $1.2pm0.3$ ps hole-phonon relaxation time and a $3.1pm0.4$ ps carrier recombination time are extracted from the XUV transient absorption spectra from the core-to-conduction band transitions at the W O$_{3}$ edge. Global fitting of the transient absorption signal at the W N$_{6,7}$ edge yields $sim 10$ fs coherence lifetimes of core-exciton states and reveals that the photoexcited carriers, which alter the electronic screening and band filling, are the dominant contributor to the spectral modifications of core-excitons and direct field-induced changes play a minor role. This work provides a first look at the modulations of core-exciton states by photoexcited carriers and advances our understanding of carrier dynamics in metal dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا