ﻻ يوجد ملخص باللغة العربية
A theoretical investigation of the ultrafast processes and dynamics of the excited carriers upon irradiation of GaAs with femtosecond (fs) pulsed lasers is performed in conditions that induce material damage and eventually surface modification of the heated solid. A parametric study is followed to correlate the produced transient carrier density with the damage threshold for various pulse duration values {tau}p (it increases as ~ at relatively small values of {tau}p while it drops for pulse durations of the order of some picoseconds) based on the investigation of the fundamental multiscale physical processes following fs-laser irradiation. Moreover, fluence values for which the originally semiconducting material demonstrates a metallic behaviour are estimated. It is shown that a sufficient number of carriers in the conduction band are produced to excite Surface Plasmon (SP) waves that upon coupling with the incident beam and a fluid-based surface modification mechanism lead to the formation of sub-wavelength periodic structures orientated perpendicularly to the laser beam polarization. Experimental results for the damage threshold and the frequencies of induced periodic structures show a good agreement with the theoretical predictions.
We present a theoretical investigation of the yet unexplored dynamics of the produced excited carriers upon irradiation of hexagonal Silicon Carbide (6H-SiC) with femtosecond laser pulses. To describe the ultrafast behaviour of laser induced out-of-e
Understanding the mechanisms and controlling the possibilities of surface nanostructuring is of crucial interest from fundamental and practical perspectives. Here we report a direct experimental observation of laser-induced periodic surface structure
The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics fol
In this work, we present evidence for the existence of a magnonic current on the sub-picosecond time-scale in a ferrimagnetic bilayer and its effect on ultrafast spin dynamics. The ferrimagnet, GdFeCo, is a material known to undergo ultrafast switchi
The complex physics of the interaction between short pulse high intensity lasers and solids is so far hardly accessible by experiments. As a result of missing experimental capabilities to probe the complex electron dynamics and competing instabilitie