ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction of 5-hydroxytryptamine Transporter Inhibitor based on Machine Learning

134   0   0.0 ( 0 )
 نشر من قبل Weikaixin Kong
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In patients with depression, the use of 5-HT reuptake inhibitors can improve the condition. Topological fingerprints, ECFP4, and molecular descriptors were used. Some SERT and small molecules combined prediction models were established by using 5 machine learning methods. We selected the higher accuracy models(RF, SVM, LR) in five-fold cross-validation of training set to establish an integrated model (VOL_CLF). The training set is from Chembl database and oversampled by SMOTE algorithm to eliminate data imbalance. The unbalanced data from same sources (Chembl) was used as Test set 1; the unbalanced data with different sources(Drugbank) was used as Test set 2 . The prediction accuracy of SERT inhibitors in Test set 1 was 90.7%~93.3%(VOL_CLF method was the highest); the inhibitory recall rate was 84.6%-90.1%(RF method was the highest); the non-inhibitor prediction accuracy rate was 76.1%~80.2%(RF method is the highest); the non-inhibitor predictive recall rate is 81.2%~87.5% (SVM and VOL_CLF methods were the highest) The RF model in Test Set 2 performed better than the other models. The SERT inhibitor predicted accuracy rate, recall rate, non-inhibitor predicted accuracy rate, recall rate were 42.9%, 85.7%, 95.7%, 73.3%.This study demonstrates that machine learning methods effectively predict inhibitors of serotonin transporters and accelerate drug screening.



قيم البحث

اقرأ أيضاً

We used machine learning methods to predict NaV1.7 inhibitors and found the model RF-CDK that performed best on the imbalanced dataset. Using the RF-CDK model for screening drugs, we got effective compounds K1. We use the cell patch clamp method to v erify K1. However, because the model evaluation method in this article is not comprehensive enough, there is still a lot of research work to be performed, such as comparison with other existing methods. The target protein has multiple active sites and requires our further research. We need more detailed models to consider this biological process and compare it with the current results, which is an error in this article. So we want to withdraw this article.
Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particula rly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.
Stock price prediction is a challenging task, but machine learning methods have recently been used successfully for this purpose. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical and quantitative analysis and t ested their validity on short-term mid-price movement prediction. We focus on a wrapper feature selection method using entropy, least-mean squares, and linear discriminant analysis. We also build a new quantitative feature based on adaptive logistic regression for online learning, which is constantly selected first among the majority of the proposed feature selection methods. This study examines the best combination of features using high frequency limit order book data from Nasdaq Nordic. Our results suggest that sorting methods and classifiers can be used in such a way that one can reach the best performance with a combination of only very few advanced hand-crafted features.
182 - Zixuan Cang , Lin Mu , Guowei Wei 2017
This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination.
Academics and practitioners have studied over the years models for predicting firms bankruptcy, using statistical and machine-learning approaches. An earlier sign that a company has financial difficulties and may eventually bankrupt is going in emph{ default}, which, loosely speaking means that the company has been having difficulties in repaying its loans towards the banking system. Firms default status is not technically a failure but is very relevant for bank lending policies and often anticipates the failure of the company. Our study uses, for the first time according to our knowledge, a very large database of granular credit data from the Italian Central Credit Register of Bank of Italy that contain information on all Italian companies past behavior towards the entire Italian banking system to predict their default using machine-learning techniques. Furthermore, we combine these data with other information regarding companies public balance sheet data. We find that ensemble techniques and random forest provide the best results, corroborating the findings of Barboza et al. (Expert Syst. Appl., 2017).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا