ﻻ يوجد ملخص باللغة العربية
This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination.
Global coronavirus disease pandemic (COVID-19) caused by newly identified SARS- CoV-2 coronavirus continues to claim the lives of thousands of people worldwide. The unavailability of specific medications to treat COVID-19 has led to drug repositionin
In this work we build a stack of machine learning models aimed at composing a state-of-the-art credit rating and default prediction system, obtaining excellent out-of-sample performances. Our approach is an excursion through the most recent ML / AI c
Measuring similarity between molecules is an important part of virtual screening (VS) experiments deployed during the early stages of drug discovery. Most widely used methods for evaluating the similarity of molecules use molecular fingerprints to en
For several decades optical tweezers have proven to be an invaluable tool in the study and analysis of a myriad biological responses and applications. However, as every tool, it can have undesirable or damaging effects upon the very sample it is help
Fingerprint-based models for protein-ligand binding have demonstrated outstanding success on benchmark datasets; however, these models may not learn the correct binding rules. To assess this concern, we use in silico datasets with known binding rules