ترغب بنشر مسار تعليمي؟ اضغط هنا

Firms Default Prediction with Machine Learning

93   0   0.0 ( 0 )
 نشر من قبل Aris Anagnostopoulos
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Academics and practitioners have studied over the years models for predicting firms bankruptcy, using statistical and machine-learning approaches. An earlier sign that a company has financial difficulties and may eventually bankrupt is going in emph{default}, which, loosely speaking means that the company has been having difficulties in repaying its loans towards the banking system. Firms default status is not technically a failure but is very relevant for bank lending policies and often anticipates the failure of the company. Our study uses, for the first time according to our knowledge, a very large database of granular credit data from the Italian Central Credit Register of Bank of Italy that contain information on all Italian companies past behavior towards the entire Italian banking system to predict their default using machine-learning techniques. Furthermore, we combine these data with other information regarding companies public balance sheet data. We find that ensemble techniques and random forest provide the best results, corroborating the findings of Barboza et al. (Expert Syst. Appl., 2017).



قيم البحث

اقرأ أيضاً

We propose some machine-learning-based algorithms to solve hedging problems in incomplete markets. Sources of incompleteness cover illiquidity, untradable risk factors, discrete hedging dates and transaction costs. The proposed algorithms resulting s trategies are compared to classical stochastic control techniques on several payoffs using a variance criterion. One of the proposed algorithm is flexible enough to be used with several existing risk criteria. We furthermore propose a new moment-based risk criteria.
The 2008 financial crisis has been attributed to excessive complexity of the financial system due to financial innovation. We employ computational complexity theory to make this notion precise. Specifically, we consider the problem of clearing a fina ncial network after a shock. Prior work has shown that when banks can only enter into simple debt contracts with each other, then this problem can be solved in polynomial time. In contrast, if they can also enter into credit default swaps (CDSs), i.e., financial derivative contracts that depend on the default of another bank, a solution may not even exist. In this work, we show that deciding if a solution exists is NP-complete if CDSs are allowed. This remains true if we relax the problem to $varepsilon$-approximate solutions, for a constant $varepsilon$. We further show that, under sufficient conditions where a solution is guaranteed to exist, the approximate search problem is PPAD-complete for constant $varepsilon$. We then try to isolate the origin of the complexity. It turns out that already determining which banks default is hard. Further, we show that the complexity is not driven by the dependence of counterparties on each other, but rather hinges on the presence of so-called naked CDSs. If naked CDSs are not present, we receive a simple polynomial-time algorithm. Our results are of practical importance for regulators stress tests and regulatory policy.
112 - Zhuo Jin , Huafu Liao , Yue Yang 2019
This paper studies the optimal dividend for a multi-line insurance group, in which each subsidiary runs a product line and is exposed to some external credit risk. The default contagion is considered such that one default event may increase the defau lt probabilities of all surviving subsidiaries. The total dividend problem for the insurance group is investigated and we find that the optimal dividend strategy is still of the barrier type. Furthermore, we show that the optimal barrier of each subsidiary is modulated by the default state. That is, how many and which subsidiaries have defaulted will determine the dividend threshold of each surviving subsidiary. These conclusions are based on the analysis of the associated recursive system of Hamilton-Jacobi-Bellman variational inequalities (HJBVIs). The existence of the classical solution is established and the verification theorem is proved. In the case of two subsidiaries, the value function and optimal barriers are given in analytical forms, allowing us to conclude that the optimal barrier of one subsidiary decreases if the other subsidiary defaults.
In this paper we present a novel approach for firm default probability estimation. The methodology is based on multivariate contingent claim analysis and pair copula constructions. For each considered firm, balance sheet data are used to assess the a sset value, and to compute its default probability. The asset pricing function is expressed via a pair copula construction, and it is approximated via Monte Carlo simulations. The methodology is illustrated through an application to the analysis of both operative and defaulted firms.
Stock price prediction is a challenging task, but machine learning methods have recently been used successfully for this purpose. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical and quantitative analysis and t ested their validity on short-term mid-price movement prediction. We focus on a wrapper feature selection method using entropy, least-mean squares, and linear discriminant analysis. We also build a new quantitative feature based on adaptive logistic regression for online learning, which is constantly selected first among the majority of the proposed feature selection methods. This study examines the best combination of features using high frequency limit order book data from Nasdaq Nordic. Our results suggest that sorting methods and classifiers can be used in such a way that one can reach the best performance with a combination of only very few advanced hand-crafted features.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا