ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring emergent heterogeneous phases in strongly repulsive Fermi gases

133   0   0.0 ( 0 )
 نشر من قبل Matteo Zaccanti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments have revitalized the interest in a Fermi gas of ultracold atoms with strong repulsive interactions. In spite of its seeming simplicity, this system exhibits a complex behavior, resulting from the competing action of two distinct instabilities: ferromagnetism, which promotes spin anticorrelations and domain formation; and pairing, that renders the repulsive fermionic atoms unstable towards forming weakly bound bosonic molecules. The breakdown of the homogeneous repulsive Fermi liquid arising from such concurrent mechanisms has been recently observed in real time through pump-probe spectroscopic techniques [A. Amico et al., Phys. Rev. Lett. 121, 253602 (2018)]. These studies also lead to the discovery of an emergent metastable many-body state, an unpredicted quantum emulsion of anticorrelated fermions and pairs. Here, we investigate in detail the properties of such an exotic regime by studying the evolution of kinetic and release energies, the spectral response and coherence of the unpaired fermionic population, and its spin-density noise correlations. All our observations consistently point to a low-temperature heterogeneous phase, where paired and unpaired fermions macroscopically coexist while featuring micro-scale phase separation. Our findings open new appealing avenues for the exploration of quantum emulsions and also possibly of inhomogeneous superfluid regimes, where pair condensation may coexist with magnetic order.

قيم البحث

اقرأ أيضاً

120 - W. Zwerger 2016
The experimental realization of stable, ultracold Fermi gases near a Feshbach resonance allows to study gases with attractive interactions of essentially arbitrary strength. They extend the classic paradigm of BCS into a regime which has never been a ccessible before. We review the theoretical concepts which have been developed in this context, including the Tan relations and the notion of fixed points at zero density, which are at the origin of universality. We discuss in detail the universal thermodynamics of the unitary Fermi gas which allows a fit free comparison between theory and experiment for this strongly interacting system. In addition, we adress the consequences of scale invariance at infinite scattering length and the subtle violation of scale invariance in two dimensions. Finally we discuss the Fermionic excitation spectrum accessible in momentum resolved RF-spectroscopy and the origin of universal lower bounds for the shear viscosity and the spin diffusion constant.
We exploit a time-resolved pump-probe spectroscopic technique to study the out-of-equilibrium dynamics of an ultracold two-component Fermi gas, selectively quenched to strong repulsion along the upper branch of a broad Feshbach resonance. For critica l interactions, we find the rapid growth of short-range anti-correlations between repulsive fermions to initially overcome concurrent pairing processes. At longer evolution times, these two competing mechanisms appear to macroscopically coexist in a short-range correlated state of fermions and pairs, unforeseen thus far. Our work provides fundamental insights into the fate of a repulsive Fermi gas, and offers new perspectives towards the exploration of complex dynamical regimes of fermionic matter.
A novel way to produce quantum Hall ribbons in a cold atomic system is to use M hyperfine states of atoms in a 1D optical lattice to mimic an additional synthetic dimension. A notable aspect here is that the SU(M) symmetric interaction between atoms manifests as infinite ranged along the synthetic dimension. We study the many body physics of fermions with attractive interactions in this system. We use a combination of analytical field theoretic and numerical density matrix renormalization group (DMRG) methods to reveal the rich ground state phase diagram of the system, including novel phases such as squished baryon fluids. Remarkably, changing the parameters entails unusual crossovers and transitions, e. g., we show that increasing the magnetic field (that produces the Hall effect) may convert a ferrometallic state at low fields to a squished baryon superfluid (with algebraic pairing correlations) at high fields. We also show that this system provides a unique opportunity to study quantum phase separation in a multiflavor ultracold fermionic system.
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov [ZhETF, 1 9 (1949) 637]. Our predictions can be tested in state-of-the-art experiments with cold atomic gases in the collisionless regime.
We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parame terizing the solutions in the rotating frame we find that the energy and entropy are universal for all rotations in the strongly interacting regime. Additionally, we find that rotation suppresses the onset of itinerant ferromagnetism in strongly interacting repulsive three-body systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا