ترغب بنشر مسار تعليمي؟ اضغط هنا

Cascaded LSTMs based Deep Reinforcement Learning for Goal-driven Dialogue

69   0   0.0 ( 0 )
 نشر من قبل Yue Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a deep neural network model for joint modeling Natural Language Understanding (NLU) and Dialogue Management (DM) in goal-driven dialogue systems. There are three parts in this model. A Long Short-Term Memory (LSTM) at the bottom of the network encodes utterances in each dialogue turn into a turn embedding. Dialogue embeddings are learned by a LSTM at the middle of the network, and updated by the feeding of all turn embeddings. The top part is a forward Deep Neural Network which converts dialogue embeddings into the Q-values of different dialogue actions. The cascaded LSTMs based reinforcement learning network is jointly optimized by making use of the rewards received at each dialogue turn as the only supervision information. There is no explicit NLU and dialogue states in the network. Experimental results show that our model outperforms both traditional Markov Decision Process (MDP) model and single LSTM with Deep Q-Network on meeting room booking tasks. Visualization of dialogue embeddings illustrates that the model can learn the representation of dialogue states.

قيم البحث

اقرأ أيضاً

138 - Lu Chen , Zhi Chen , Bowen Tan 2019
Dialogue policy plays an important role in task-oriented spoken dialogue systems. It determines how to respond to users. The recently proposed deep reinforcement learning (DRL) approaches have been used for policy optimization. However, these deep mo dels are still challenging for two reasons: 1) Many DRL-based policies are not sample-efficient. 2) Most models dont have the capability of policy transfer between different domains. In this paper, we propose a universal framework, AgentGraph, to tackle these two problems. The proposed AgentGraph is the combination of GNN-based architecture and DRL-based algorithm. It can be regarded as one of the multi-agent reinforcement learning approaches. Each agent corresponds to a node in a graph, which is defined according to the dialogue domain ontology. When making a decision, each agent can communicate with its neighbors on the graph. Under AgentGraph framework, we further propose Dual GNN-based dialogue policy, which implicitly decomposes the decision in each turn into a high-level global decision and a low-level local decision. Experiments show that AgentGraph models significantly outperform traditional reinforcement learning approaches on most of the 18 tasks of the PyDial benchmark. Moreover, when transferred from the source task to a target task, these models not only have acceptable initial performance but also converge much faster on the target task.
Learning to reach goal states and learning diverse skills through mutual information (MI) maximization have been proposed as principled frameworks for self-supervised reinforcement learning, allowing agents to acquire broadly applicable multitask pol icies with minimal reward engineering. Starting from a simple observation that the standard goal-conditioned RL (GCRL) is encapsulated by the optimization objective of variational empowerment, we discuss how GCRL and MI-based RL can be generalized into a single family of methods, which we name variational GCRL (VGCRL), interpreting variational MI maximization, or variational empowerment, as representation learning methods that acquire functionally-aware state representations for goal reaching. This novel perspective allows us to: (1) derive simple but unexplored variants of GCRL to study how adding small representation capacity can already expand its capabilities; (2) investigate how discriminator function capacity and smoothness determine the quality of discovered skills, or latent goals, through modifying latent dimensionality and applying spectral normalization; (3) adapt techniques such as hindsight experience replay (HER) from GCRL to MI-based RL; and lastly, (4) propose a novel evaluation metric, named latent goal reaching (LGR), for comparing empowerment algorithms with different choices of latent dimensionality and discriminator parameterization. Through principled mathematical derivations and careful experimental studies, our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
Deep reinforcement learning (RL) methods have significant potential for dialogue policy optimisation. However, they suffer from a poor performance in the early stages of learning. This is especially problematic for on-line learning with real users. T wo approaches are introduced to tackle this problem. Firstly, to speed up the learning process, two sample-efficient neural networks algorithms: trust region actor-critic with experience replay (TRACER) and episodic natural actor-critic with experience replay (eNACER) are presented. For TRACER, the trust region helps to control the learning step size and avoid catastrophic model changes. For eNACER, the natural gradient identifies the steepest ascent direction in policy space to speed up the convergence. Both models employ off-policy learning with experience replay to improve sample-efficiency. Secondly, to mitigate the cold start issue, a corpus of demonstration data is utilised to pre-train the models prior to on-line reinforcement learning. Combining these two approaches, we demonstrate a practical approach to learn deep RL-based dialogue policies and demonstrate their effectiveness in a task-oriented information seeking domain.
Most existing approaches for goal-oriented dialogue policy learning used reinforcement learning, which focuses on the target agent policy and simply treat the opposite agent policy as part of the environment. While in real-world scenarios, the behavi or of an opposite agent often exhibits certain patterns or underlies hidden policies, which can be inferred and utilized by the target agent to facilitate its own decision making. This strategy is common in human mental simulation by first imaging a specific action and the probable results before really acting it. We therefore propose an opposite behavior aware framework for policy learning in goal-oriented dialogues. We estimate the opposite agents policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy. We evaluate our model on both cooperative and competitive dialogue tasks, showing superior performance over state-of-the-art baselines.
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks. Recent progress in model-based RL allows agents to be much more data-efficient, as it enables them to learn behavi ors of visual environments in imagination by leveraging an internal World Model of the environment. Improved sample efficiency can also be achieved by reusing knowledge from previously learned tasks, but transfer learning is still a challenging topic in RL. Parameter-based transfer learning is generally done using an all-or-nothing approach, where the networks parameters are either fully transferred or randomly initialized. In this work we present a simple alternative approach: fractional transfer learning. The idea is to transfer fractions of knowledge, opposed to discarding potentially useful knowledge as is commonly done with random initialization. Using the World Model-based Dreamer algorithm, we identify which type of components this approach is applicable to, and perform experiments in a new multi-source transfer learning setting. The results show that fractional transfer learning often leads to substantially improved performance and faster learning compared to learning from scratch and random initialization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا