ترغب بنشر مسار تعليمي؟ اضغط هنا

Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management

103   0   0.0 ( 0 )
 نشر من قبل Pei-Hao Su
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep reinforcement learning (RL) methods have significant potential for dialogue policy optimisation. However, they suffer from a poor performance in the early stages of learning. This is especially problematic for on-line learning with real users. Two approaches are introduced to tackle this problem. Firstly, to speed up the learning process, two sample-efficient neural networks algorithms: trust region actor-critic with experience replay (TRACER) and episodic natural actor-critic with experience replay (eNACER) are presented. For TRACER, the trust region helps to control the learning step size and avoid catastrophic model changes. For eNACER, the natural gradient identifies the steepest ascent direction in policy space to speed up the convergence. Both models employ off-policy learning with experience replay to improve sample-efficiency. Secondly, to mitigate the cold start issue, a corpus of demonstration data is utilised to pre-train the models prior to on-line reinforcement learning. Combining these two approaches, we demonstrate a practical approach to learn deep RL-based dialogue policies and demonstrate their effectiveness in a task-oriented information seeking domain.

قيم البحث

اقرأ أيضاً

138 - Lu Chen , Zhi Chen , Bowen Tan 2019
Dialogue policy plays an important role in task-oriented spoken dialogue systems. It determines how to respond to users. The recently proposed deep reinforcement learning (DRL) approaches have been used for policy optimization. However, these deep mo dels are still challenging for two reasons: 1) Many DRL-based policies are not sample-efficient. 2) Most models dont have the capability of policy transfer between different domains. In this paper, we propose a universal framework, AgentGraph, to tackle these two problems. The proposed AgentGraph is the combination of GNN-based architecture and DRL-based algorithm. It can be regarded as one of the multi-agent reinforcement learning approaches. Each agent corresponds to a node in a graph, which is defined according to the dialogue domain ontology. When making a decision, each agent can communicate with its neighbors on the graph. Under AgentGraph framework, we further propose Dual GNN-based dialogue policy, which implicitly decomposes the decision in each turn into a high-level global decision and a low-level local decision. Experiments show that AgentGraph models significantly outperform traditional reinforcement learning approaches on most of the 18 tasks of the PyDial benchmark. Moreover, when transferred from the source task to a target task, these models not only have acceptable initial performance but also converge much faster on the target task.
In this work we present a new agent architecture, called Reactor, which combines multiple algorithmic and architectural contributions to produce an agent with higher sample-efficiency than Prioritized Dueling DQN (Wang et al., 2016) and Categorical D QN (Bellemare et al., 2017), while giving better run-time performance than A3C (Mnih et al., 2016). Our first contribution is a new policy evaluation algorithm called Distributional Retrace, which brings multi-step off-policy updates to the distributional reinforcement learning setting. The same approach can be used to convert several classes of multi-step policy evaluation algorithms designed for expected value evaluation into distributional ones. Next, we introduce the b{eta}-leave-one-out policy gradient algorithm which improves the trade-off between variance and bias by using action values as a baseline. Our final algorithmic contribution is a new prioritized replay algorithm for sequences, which exploits the temporal locality of neighboring observations for more efficient replay prioritization. Using the Atari 2600 benchmarks, we show that each of these innovations contribute to both the sample efficiency and final agent performance. Finally, we demonstrate that Reactor reaches state-of-the-art performance after 200 million frames and less than a day of training.
154 - Shariq Iqbal , Fei Sha 2018
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in single-agent settings. We present an actor-critic algorithm that trains decentralized policies in multi-agent settin gs, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multi-agent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
Continuous control tasks in reinforcement learning are important because they provide an important framework for learning in high-dimensional state spaces with deceptive rewards, where the agent can easily become trapped into suboptimal solutions. On e way to avoid local optima is to use a population of agents to ensure coverage of the policy space, yet learning a population with the best coverage is still an open problem. In this work, we present a novel approach to population-based RL in continuous control that leverages properties of normalizing flows to perform attractive and repulsive operations between current members of the population and previously observed policies. Empirical results on the MuJoCo suite demonstrate a high performance gain for our algorithm compared to prior work, including Soft-Actor Critic (SAC).
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle conv ergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا