ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Star Galaxy Classification with Cascade Variational Auto-Encoder

71   0   0.0 ( 0 )
 نشر من قبل Hao Sun
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing amount of data in astronomy provides great challenges for machine learning research. Previously, supervised learning methods achieved satisfactory recognition accuracy for the star-galaxy classification task, based on manually labeled data set. In this work, we propose a novel unsupervised approach for the star-galaxy recognition task, namely Cascade Variational Auto-Encoder (CasVAE). Our empirical results show our method outperforms the baseline model in both accuracy and stability.



قيم البحث

اقرأ أيضاً

Variational Auto-Encoders (VAEs) have become very popular techniques to perform inference and learning in latent variable models as they allow us to leverage the rich representational power of neural networks to obtain flexible approximations of the posterior of latent variables as well as tight evidence lower bounds (ELBOs). Combined with stochastic variational inference, this provides a methodology scaling to large datasets. However, for this methodology to be practically efficient, it is necessary to obtain low-variance unbiased estimators of the ELBO and its gradients with respect to the parameters of interest. While the use of Markov chain Monte Carlo (MCMC) techniques such as Hamiltonian Monte Carlo (HMC) has been previously suggested to achieve this [23, 26], the proposed methods require specifying reverse kernels which have a large impact on performance. Additionally, the resulting unbiased estimator of the ELBO for most MCMC kernels is typically not amenable to the reparameterization trick. We show here how to optimally select reverse kernels in this setting and, by building upon Hamiltonian Importance Sampling (HIS) [17], we obtain a scheme that provides low-variance unbiased estimators of the ELBO and its gradients using the reparameterization trick. This allows us to develop a Hamiltonian Variational Auto-Encoder (HVAE). This method can be reinterpreted as a target-informed normalizing flow [20] which, within our context, only requires a few evaluations of the gradient of the sampled likelihood and trivial Jacobian calculations at each iteration.
To act and plan in complex environments, we posit that agents should have a mental simulator of the world with three characteristics: (a) it should build an abstract state representing the condition of the world; (b) it should form a belief which rep resents uncertainty on the world; (c) it should go beyond simple step-by-step simulation, and exhibit temporal abstraction. Motivated by the absence of a model satisfying all these requirements, we propose TD-VAE, a generative sequence model that learns representations containing explicit beliefs about states several steps into the future, and that can be rolled out directly without single-step transitions. TD-VAE is trained on pairs of temporally separated time points, using an analogue of temporal difference learning used in reinforcement learning.
158 - Haowen Xu 2018
To ensure undisrupted business, large Internet companies need to closely monitor various KPIs (e.g., Page Views, number of online users, and number of orders) of its Web applications, to accurately detect anomalies and trigger timely troubleshooting/ mitigation. However, anomaly detection for these seasonal KPIs with various patterns and data quality has been a great challenge, especially without labels. In this paper, we proposed Donut, an unsupervised anomaly detection algorithm based on VAE. Thanks to a few of our key techniques, Donut greatly outperforms a state-of-arts supervised ensemble approach and a baseline VAE approach, and its best F-scores range from 0.75 to 0.9 for the studied KPIs from a top global Internet company. We come up with a novel KDE interpretation of reconstruction for Donut, making it the first VAE-based anomaly detection algorithm with solid theoretical explanation.
158 - Graham Fyffe 2019
We prove that the evidence lower bound (ELBO) employed by variational auto-encoders (VAEs) admits non-trivial solutions having constant posterior variances under certain mild conditions, removing the need to learn variances in the encoder. The proof follows from an unexpected journey through an array of topics: the closed form optimal decoder for Gaussian VAEs, a proof that the decoder is always smooth, a proof that the ELBO at its stationary points is equal to the exact log evidence, and the posterior variance is merely part of a stochastic estimator of the decoder Hessian. The penalty incurred from using a constant posterior variance is small under mild conditions, and otherwise discourages large variations in the decoder Hessian. From here we derive a simplified formulation of the ELBO as an expectation over a batch, which we call the Batch Information Lower Bound (BILBO). Despite the use of Gaussians, our analysis is broadly applicable -- it extends to any likelihood function that induces a Riemannian metric. Regarding learned likelihoods, we show that the ELBO is optimal in the limit as the likelihood variances approach zero, where it is equivalent to the change of variables formulation employed in normalizing flow networks. Standard optimization procedures are unstable in this limit, so we propose a bounded Gaussian likelihood that is invariant to the scale of the data using a measure of the aggregate information in a batch, which we call Bounded Aggregate Information Sampling (BAGGINS). Combining the two formulations, we construct VAE networks with only half the outputs of ordinary VAEs (no learned variances), yielding improved ELBO scores and scale invariance in experiments. As we perform our analyses irrespective of any particular network architecture, our reformulations may apply to any VAE implementation.
We propose a new probabilistic method for unsupervised recovery of corrupted data. Given a large ensemble of degraded samples, our method recovers accurate posteriors of clean values, allowing the exploration of the manifold of possible reconstructed data and hence characterising the underlying uncertainty. In this setting, direct application of classical variational methods often gives rise to collapsed densities that do not adequately explore the solution space. Instead, we derive our novel reduced entropy condition approximate inference method that results in rich posteriors. We test our model in a data recovery task under the common setting of missing values and noise, demonstrating superior performance to existing variational methods for imputation and de-noising with different real data sets. We further show higher classification accuracy after imputation, proving the advantage of propagating uncertainty to downstream tasks with our model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا