ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Predict Without Looking Ahead: World Models Without Forward Prediction

66   0   0.0 ( 0 )
 نشر من قبل David Ha
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Much of model-based reinforcement learning involves learning a model of an agents world, and training an agent to leverage this model to perform a task more efficiently. While these models are demonstrably useful for agents, every naturally occurring model of the world of which we are aware---e.g., a brain---arose as the byproduct of competing evolutionary pressures for survival, not minimization of a supervised forward-predictive loss via gradient descent. That useful models can arise out of the messy and slow optimization process of evolution suggests that forward-predictive modeling can arise as a side-effect of optimization under the right circumstances. Crucially, this optimization process need not explicitly be a forward-predictive loss. In this work, we introduce a modification to traditional reinforcement learning which we call observational dropout, whereby we limit the agents ability to observe the real environment at each timestep. In doing so, we can coerce an agent into learning a world model to fill in the observation gaps during reinforcement learning. We show that the emerged world model, while not explicitly trained to predict the future, can help the agent learn key skills required to perform well in its environment. Videos of our results available at https://learningtopredict.github.io/

قيم البحث

اقرأ أيضاً

Object proposals have become an integral preprocessing steps of many vision pipelines including object detection, weakly supervised detection, object discovery, tracking, etc. Compared to the learning-free methods, learning-based proposals have becom e popular recently due to the growing interest in object detection. The common paradigm is to learn object proposals from data labeled with a set of object regions and their corresponding categories. However, this approach often struggles with novel objects in the open world that are absent in the training set. In this paper, we identify that the problem is that the binary classifiers in existing proposal methods tend to overfit to the training categories. Therefore, we propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlap with any ground-truth object (e.g., centerness and IoU). This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization on COCO, as well as cross-dataset evaluation on RoboNet, Object365, and EpicKitchens. Finally, we demonstrate the merit of OLN for long-tail object detection on large vocabulary dataset, LVIS, where we notice clear improvement in rare and common categories.
Genomics are rapidly transforming medical practice and basic biomedical research, providing insights into disease mechanisms and improving therapeutic strategies, particularly in cancer. The ability to predict the future course of a patients disease from high-dimensional genomic profiling will be essential in realizing the promise of genomic medicine, but presents significant challenges for state-of-the-art survival analysis methods. In this abstract we present an investigation in learning genomic representations with neural networks to predict patient survival in cancer. We demonstrate the advantages of this approach over existing survival analysis methods using brain tumor data.
Simulation can be a powerful tool for understanding machine learning systems and designing methods to solve real-world problems. Training and evaluating methods purely in simulation is often doomed to succeed at the desired task in a simulated enviro nment, but the resulting models are incapable of operation in the real world. Here we present and evaluate a method for transferring a vision-based lane following driving policy from simulation to operation on a rural road without any real-world labels. Our approach leverages recent advances in image-to-image translation to achieve domain transfer while jointly learning a single-camera control policy from simulation control labels. We assess the driving performance of this method using both open-loop regression metrics, and closed-loop performance operating an autonomous vehicle on rural and urban roads.
290 - Zhizhong Li , Derek Hoiem 2016
When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes i nfeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.
This paper explores new evaluation perspectives for image captioning and introduces a noun translation task that achieves comparative image caption generation performance by translating from a set of nouns to captions. This implies that in image capt ioning, all word categories other than nouns can be evoked by a powerful language model without sacrificing performance on n-gram precision. The paper also investigates lower and upper bounds of how much individual word categories in the captions contribute to the final BLEU score. A large possible improvement exists for nouns, verbs, and prepositions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا