ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Open-World Object Proposals without Learning to Classify

90   0   0.0 ( 0 )
 نشر من قبل Dahun Kim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object proposals have become an integral preprocessing steps of many vision pipelines including object detection, weakly supervised detection, object discovery, tracking, etc. Compared to the learning-free methods, learning-based proposals have become popular recently due to the growing interest in object detection. The common paradigm is to learn object proposals from data labeled with a set of object regions and their corresponding categories. However, this approach often struggles with novel objects in the open world that are absent in the training set. In this paper, we identify that the problem is that the binary classifiers in existing proposal methods tend to overfit to the training categories. Therefore, we propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlap with any ground-truth object (e.g., centerness and IoU). This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization on COCO, as well as cross-dataset evaluation on RoboNet, Object365, and EpicKitchens. Finally, we demonstrate the merit of OLN for long-tail object detection on large vocabulary dataset, LVIS, where we notice clear improvement in rare and common categories.

قيم البحث

اقرأ أيضاً

Simulation can be a powerful tool for understanding machine learning systems and designing methods to solve real-world problems. Training and evaluating methods purely in simulation is often doomed to succeed at the desired task in a simulated enviro nment, but the resulting models are incapable of operation in the real world. Here we present and evaluate a method for transferring a vision-based lane following driving policy from simulation to operation on a rural road without any real-world labels. Our approach leverages recent advances in image-to-image translation to achieve domain transfer while jointly learning a single-camera control policy from simulation control labels. We assess the driving performance of this method using both open-loop regression metrics, and closed-loop performance operating an autonomous vehicle on rural and urban roads.
Rapid globalization and the interdependence of humanity that engender tremendous in-flow of human migration towards the urban spaces. With advent of high definition satellite images, high resolution data, computational methods such as deep neural net work, capable hardware; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. In this paper we propose a novel classification method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. The state-of-the-art is mostly dominated by classification of building structures, building types etc. and largely represents the developed world which are insufficient for developing countries such as Bangladesh where the surrounding is crucial for the classification. Moreover, the traditional methods propose small-scale classifications, which give limited information with poor scalability and are slow to compute. We categorize the urban area in terms of informal and formal spaces taking the surroundings into account. 50 km x 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert. The classification is based broadly on two dimensions: urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four classes: 1) highly informal; 2) moderately informal; 3) moderately formal; and 4) highly formal areas. In total 16 sub-classes were identified. For semantic segmentation, Googles DeeplabV3+ model was used which increases the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used for training and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean IoU.
In Generalized Zero-Shot Learning (GZSL), unseen categories (for which no visual data are available at training time) can be predicted by leveraging their class embeddings (e.g., a list of attributes describing them) together with a complementary poo l of seen classes (paired with both visual data and class embeddings). Despite GZSL is arguably challenging, we posit that knowing in advance the class embeddings, especially for unseen categories, is an actual limit of the applicability of GZSL towards real-world scenarios. To relax this assumption, we propose Open Zero-Shot Learning (OZSL) to extend GZSL towards the open-world settings. We formalize OZSL as the problem of recognizing seen and unseen classes (as in GZSL) while also rejecting instances from unknown categories, for which neither visual data nor class embeddings are provided. We formalize the OZSL problem introducing evaluation protocols, error metrics and benchmark datasets. We also suggest to tackle the OZSL problem by proposing the idea of performing unknown feature generation (instead of only unseen features generation as done in GZSL). We achieve this by optimizing a generative process to sample unknown class embeddings as complementary to the seen and the unseen. We intend these results to be the ground to foster future research, extending the standard closed-world zero-shot learning (GZSL) with the novel open-world counterpart (OZSL).
Object proposal generation is often the first step in many detection models. It is lucrative to train a good proposal model, that generalizes to unseen classes. This could help scaling detection models to larger number of classes with fewer annotatio ns. Motivated by this, we study how a detection model trained on a small set of source classes can provide proposals that generalize to unseen classes. We systematically study the properties of the dataset - visual diversity and label space granularity - required for good generalization. We show the trade-off between using fine-grained labels and coarse labels. We introduce the idea of prototypical classes: a set of sufficient and necessary classes required to train a detection model to obtain generalized proposals in a more data-efficient way. On the Open Images V4 dataset, we show that only 25% of the classes can be selected to form such a prototypical set. The resulting proposals from a model trained with these classes is only 4.3% worse than using all the classes, in terms of average recall (AR). We also demonstrate that Faster R-CNN model leads to better generalization of proposals compared to a single-stage network like RetinaNet.
Arctic environments are rapidly changing under the warming climate. Of particular interest are wetlands, a type of ecosystem that constitutes the most effective terrestrial long-term carbon store. As permafrost thaws, the carbon that was locked in th ese wetland soils for millennia becomes available for aerobic and anaerobic decomposition, which releases CO2 and CH4, respectively, back to the atmosphere.As CO2 and CH4 are potent greenhouse gases, this transfer of carbon from the land to the atmosphere further contributes to global warming, thereby increasing the rate of permafrost degradation in a positive feedback loop. Therefore, monitoring Arctic wetland health and dynamics is a key scientific task that is also of importance for policy. However, the identification and delineation of these important wetland ecosystems, remain incomplete and often inaccurate. Mapping the extent of Arctic wetlands remains a challenge for the scientific community. Conventional, coarser remote sensing methods are inadequate at distinguishing the diverse and micro-topographically complex non-vascular vegetation that characterize Arctic wetlands, presenting the need for better identification methods. To tackle this challenging problem, we constructed and annotated the first-of-its-kind Arctic Wetland Dataset (AWD). Based on that, we present ArcticNet, a deep neural network that exploits the multi-spectral, high-resolution imagery captured from nanosatellites (Planet Dove CubeSats) with additional DEM from the ArcticDEM project, to semantically label a Arctic study area into six types, in which three Arctic wetland functional types are included. We present multi-fold efforts to handle the arising challenges, including class imbalance, and the choice of fusion strategies. Preliminary results endorse the high promise of ArcticNet, achieving 93.12% in labelling a hold-out set of regions in our Arctic study area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا