ترغب بنشر مسار تعليمي؟ اضغط هنا

OSSOS XVIII: Constraining migration models with the 2:1 resonance using the Outer Solar System Origins Survey

166   0   0.0 ( 0 )
 نشر من قبل Ying-Tung Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant dynamics plays a significant role in the past evolution and current state of our outer Solar System. The population ratios and spatial distribution of Neptunes resonant populations are direct clues to understanding the history of our planetary system. The orbital structure of the objects in Neptunes 2:1 mean-motion resonance (emph{twotinos}) has the potential to be a tracer of planetary migration processes. Different migration processes produce distinct architectures, recognizable by well-characterized surveys. However, previous characterized surveys only discovered a few twotinos, making it impossible to model the intrinsic twotino population. With a well-designed cadence and nearly 100% tracking success, the Outer Solar System Origins Survey (OSSOS) discovered 838 trans-Neptunian objects, of which 34 are securely twotinos with well-constrained libration angles and amplitudes. We use the OSSOS twotinos and the survey characterization parameters via the OSSOS Survey Simulator to inspect the intrinsic population and orbital distributions of twotino. The estimated twotino population, 4400$^{+1500}_{-1100}$ with $H_r<8.66$ (diameter$sim$100km) at 95% confidence, is consistent with the previous low-precision estimate. We also constrain the width of the inclination distribution to a relatively narrow value of $sigma_i$=6$^circ$$^{+1}_{-1}$, and find the eccentricity distribution is consistent with a Gaussian centered on $e_mathrm{c}=0.275$ with a width $e_mathrm{w}=0.06$. We find a single-slope exponential luminosity function with $alpha=0.6$ for the twotinos. Finally, we for the first time meaningfully constrain the fraction of symmetric twotinos, and the ratio of the leading asymmetric islands; both fractions are in a range of 0.2--0.6. These measurements rule out certain theoretical models of Neptunes migration history.



قيم البحث

اقرأ أيضاً

Context. Centaurs are icy objects in transition between the transneptunian region and the inner solar system, orbiting the Sun in the giant planet region. Some Centaurs display cometary activity, which cannot be sustained by the sublimation of water ice in this part of the solar system, and has been hypothesized to be due to the crystallization of amorphous water ice. Aims. In this work, we look at Centaurs discovered by the Outer Solar System Origins Survey (OSSOS) and search for cometary activity. Tentative detections would improve understanding of the origins of activity among these objects. Methods. We search for comae and structures by fitting and subtracting both Point Spread Functions (PSF) and Trailed point-Spread Functions (TSF) from the OSSOS images of each Centaur. When available, Col-OSSOS images were used to search for comae too. Results. No cometary activity is detected in the OSSOS sample. We track the recent orbital evolution of each new Centaur to confirm that none would actually be predicted to be active, and we provide size estimates for the objects. Conclusions. The addition of 20 OSSOS objects to the population of 250 known Centaurs is consistent with the currently understood scenario, in which drastic drops in perihelion distance induce changes in the thermal balance prone to trigger cometary activity in the giant planet region.
Most known trans-Neptunian objects (TNOs) gravitationally scattering off the giant planets have orbital inclinations consistent with an origin from the classical Kuiper belt, but a small fraction of these scattering TNOs have inclinations that are fa r too large (i > 45 deg) for this origin. These scattering outliers have previously been proposed to be interlopers from the Oort cloud or evidence of an undiscovered planet. Here we test these hypotheses using N-body simulations and the 69 centaurs and scattering TNOs detected in the Outer Solar Systems Origins Survey and its predecessors. We confirm that observed scattering objects cannot solely originate from the classical Kuiper belt, and we show that both the Oort cloud and a distant planet generate observable highly inclined scatterers. Although the number of highly inclined scatterers from the Oort Cloud is ~3 times less than observed, Oort cloud enrichment from the Suns galactic migration or birth cluster could resolve this. Meanwhile, a distant, low-eccentricity 5 Earth-mass planet replicates the observed fraction of highly inclined scatterers, but the overall inclination distribution is more excited than observed. Furthermore, the distant planet generates a longitudinal asymmetry among detached TNOs that is less extreme than often presumed, and its direction reverses across the perihelion range spanned by known TNOs. More complete models that explore the dynamical origins of the planet are necessary to further study these features. With observational biases well-characterized, our work shows that the orbital distribution of detected scattering bodies is a powerful constraint on the unobserved distant solar system.
We report the discovery and orbit of a new dwarf planet candidate, 2015 RR$_{245}$, by the Outer Solar System Origins Survey (OSSOS). 2015 RR$_{245}$s orbit is eccentric ($e=0.586$), with a semi-major axis near 82 au, yielding a perihelion distance o f 34 au. 2015 RR$_{245}$ has $g-r = 0.59 pm 0.11$ and absolute magnitude $H_{r} = 3.6 pm 0.1$; for an assumed albedo of $p_V = 12$% the object has a diameter of $sim670$ km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR$_{245}$ is securely trapped on ten-Myr timescales in the 9:2 mean-motion resonance with Neptune. It is the first TNO identified in this resonance. On hundred-Myr timescales, particles in 2015 RR$_{245}$-like orbits depart and sometimes return to the resonance, indicating that 2015 RR$_{245}$ likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9:2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk, and reinforces the view that distant resonances are heavily populated in the current Solar System. This object further motivates detailed modelling of the transient sticking population.
We use seven years worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20 degrees to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover 8 known bright objects in the outer solar system, the faintest having $V=19.8pm0.1$, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for $Vlesssim 19.1$ ($Vlesssim18.6$ in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.
We report the discovery and orbit determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging dataset. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were rec overed in this effort. ESSENCE repeatedly observed fields far from the Solar System ecliptic (-21 deg < beta < -5 deg), reaching limiting magnitudes per observation of I~23.1 and R~23.7. We examine several of the newly detected objects in detail, including 2003 UC_414 which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the Solar System. 2003 SS_422 and 2007 TA_418 have high eccentricities and large perihelia, making them candidate members of an outer class of trans-Neptunian objects. We also report a new member of the extended or detached scattered disk, 2004 VN_112, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only ~2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early Solar System.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا