ترغب بنشر مسار تعليمي؟ اضغط هنا

OSSOS: XV. No active Centaurs in the Outer Solar System Origins Survey

321   0   0.0 ( 0 )
 نشر من قبل Nahuel Cabral
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Centaurs are icy objects in transition between the transneptunian region and the inner solar system, orbiting the Sun in the giant planet region. Some Centaurs display cometary activity, which cannot be sustained by the sublimation of water ice in this part of the solar system, and has been hypothesized to be due to the crystallization of amorphous water ice. Aims. In this work, we look at Centaurs discovered by the Outer Solar System Origins Survey (OSSOS) and search for cometary activity. Tentative detections would improve understanding of the origins of activity among these objects. Methods. We search for comae and structures by fitting and subtracting both Point Spread Functions (PSF) and Trailed point-Spread Functions (TSF) from the OSSOS images of each Centaur. When available, Col-OSSOS images were used to search for comae too. Results. No cometary activity is detected in the OSSOS sample. We track the recent orbital evolution of each new Centaur to confirm that none would actually be predicted to be active, and we provide size estimates for the objects. Conclusions. The addition of 20 OSSOS objects to the population of 250 known Centaurs is consistent with the currently understood scenario, in which drastic drops in perihelion distance induce changes in the thermal balance prone to trigger cometary activity in the giant planet region.



قيم البحث

اقرأ أيضاً

Resonant dynamics plays a significant role in the past evolution and current state of our outer Solar System. The population ratios and spatial distribution of Neptunes resonant populations are direct clues to understanding the history of our planeta ry system. The orbital structure of the objects in Neptunes 2:1 mean-motion resonance (emph{twotinos}) has the potential to be a tracer of planetary migration processes. Different migration processes produce distinct architectures, recognizable by well-characterized surveys. However, previous characterized surveys only discovered a few twotinos, making it impossible to model the intrinsic twotino population. With a well-designed cadence and nearly 100% tracking success, the Outer Solar System Origins Survey (OSSOS) discovered 838 trans-Neptunian objects, of which 34 are securely twotinos with well-constrained libration angles and amplitudes. We use the OSSOS twotinos and the survey characterization parameters via the OSSOS Survey Simulator to inspect the intrinsic population and orbital distributions of twotino. The estimated twotino population, 4400$^{+1500}_{-1100}$ with $H_r<8.66$ (diameter$sim$100km) at 95% confidence, is consistent with the previous low-precision estimate. We also constrain the width of the inclination distribution to a relatively narrow value of $sigma_i$=6$^circ$$^{+1}_{-1}$, and find the eccentricity distribution is consistent with a Gaussian centered on $e_mathrm{c}=0.275$ with a width $e_mathrm{w}=0.06$. We find a single-slope exponential luminosity function with $alpha=0.6$ for the twotinos. Finally, we for the first time meaningfully constrain the fraction of symmetric twotinos, and the ratio of the leading asymmetric islands; both fractions are in a range of 0.2--0.6. These measurements rule out certain theoretical models of Neptunes migration history.
Most known trans-Neptunian objects (TNOs) gravitationally scattering off the giant planets have orbital inclinations consistent with an origin from the classical Kuiper belt, but a small fraction of these scattering TNOs have inclinations that are fa r too large (i > 45 deg) for this origin. These scattering outliers have previously been proposed to be interlopers from the Oort cloud or evidence of an undiscovered planet. Here we test these hypotheses using N-body simulations and the 69 centaurs and scattering TNOs detected in the Outer Solar Systems Origins Survey and its predecessors. We confirm that observed scattering objects cannot solely originate from the classical Kuiper belt, and we show that both the Oort cloud and a distant planet generate observable highly inclined scatterers. Although the number of highly inclined scatterers from the Oort Cloud is ~3 times less than observed, Oort cloud enrichment from the Suns galactic migration or birth cluster could resolve this. Meanwhile, a distant, low-eccentricity 5 Earth-mass planet replicates the observed fraction of highly inclined scatterers, but the overall inclination distribution is more excited than observed. Furthermore, the distant planet generates a longitudinal asymmetry among detached TNOs that is less extreme than often presumed, and its direction reverses across the perihelion range spanned by known TNOs. More complete models that explore the dynamical origins of the planet are necessary to further study these features. With observational biases well-characterized, our work shows that the orbital distribution of detected scattering bodies is a powerful constraint on the unobserved distant solar system.
We use seven years worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20 degrees to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover 8 known bright objects in the outer solar system, the faintest having $V=19.8pm0.1$, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for $Vlesssim 19.1$ ($Vlesssim18.6$ in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.
In two recent papers published in MNRAS, Namouni and Morais (2018, 2020) claimed evidence for the interstellar origin of some small Solar System bodies, including i) objects in retrograde co-orbital motion with the giant planets, and ii) the highly-i nclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar System, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde coorbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar System. We identify in the Halley type comets and the Oort cloud the most likely sources of retrograde coorbitals and highly-inclined Centaurs.
Centaurs are small bodies orbiting in the giant planet region which were scattered inwards from their source populations beyond Neptune. Some members of the population display comet-like activity during their transition through the solar system, the source of which is not well understood. The range of heliocentric distances where the active Centaurs have been observed, and their median lifetime in the region suggest this activity is neither driven by water-ice sublimation, nor entirely by super-volatiles. Here we present an observational and thermo-dynamical study of 13 Centaurs discovered in the Pan-STARRS1 detection database aimed at identifying and characterizing active objects beyond the orbit of Jupiter. We find no evidence of activity associated with any of our targets at the time of their observations with the Gemini North telescope in 2017 and 2018, or in archival data from 2013 to 2019. Upper limits on the possible volatile and dust production rates from our targets are 1-2 orders of magnitude lower than production rates in some known comets, and are in agreement with values measured for other inactive Centaurs. Our numerical integrations show that the orbits of six of our targets evolved interior to r$sim$15 AU over the past 100,000 years where several possible processes could trigger sublimation and outgassing, but their apparent inactivity indicates their dust production is either below our detection limit or that the objects are dormant. Only one Centaur in our sample -- 2014 PQ$_{70}$ experienced a sudden decrease in semi-major axis and perihelion distance attributed to the onset of activity for some previously known inactive Centaurs, and therefore is a likely candidate for future outburst. This object should be a target of interest for further observational monitoring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا