ترغب بنشر مسار تعليمي؟ اضغط هنا

OSSOS: IV. Discovery of a dwarf planet candidate in the 9:2 resonance with Neptune

100   0   0.0 ( 0 )
 نشر من قبل Michele T. Bannister
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery and orbit of a new dwarf planet candidate, 2015 RR$_{245}$, by the Outer Solar System Origins Survey (OSSOS). 2015 RR$_{245}$s orbit is eccentric ($e=0.586$), with a semi-major axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR$_{245}$ has $g-r = 0.59 pm 0.11$ and absolute magnitude $H_{r} = 3.6 pm 0.1$; for an assumed albedo of $p_V = 12$% the object has a diameter of $sim670$ km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR$_{245}$ is securely trapped on ten-Myr timescales in the 9:2 mean-motion resonance with Neptune. It is the first TNO identified in this resonance. On hundred-Myr timescales, particles in 2015 RR$_{245}$-like orbits depart and sometimes return to the resonance, indicating that 2015 RR$_{245}$ likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9:2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk, and reinforces the view that distant resonances are heavily populated in the current Solar System. This object further motivates detailed modelling of the transient sticking population.



قيم البحث

اقرأ أيضاً

We report the discovery of a $H_r = 3.4pm0.1$ dwarf planet candidate by the Pan-STARRS Outer Solar System Survey. 2010 JO$_{179}$ is red with $(g-r)=0.88 pm 0.21$, roughly round, and slowly rotating, with a period of $30.6$ hr. Estimates of its albed o imply a diameter of 600--900~km. Observations sampling the span between 2005--2016 provide an exceptionally well-determined orbit for 2010 JO$_{179}$, with a semi-major axis of $78.307pm0.009$ au, distant orbits known to this precision are rare. We find that 2010 JO$_{179}$ librates securely within the 21:5 mean-motion resonance with Neptune on hundred-megayear time scales, joining the small but growing set of known distant dwarf planets on metastable resonant orbits. These imply a substantial trans-Neptunian population that shifts between stability in high-order resonances, the detached population, and the eroding population of the scattering disk.
We validate the discovery of a 2 Earth radii sub-Neptune-size planet around the nearby high proper motion M2.5-dwarf G 9-40 (EPIC 212048748), using high-precision near-infrared (NIR) radial velocity (RV) observations with the Habitable-zone Planet Fi nder (HPF), precision diffuser-assisted ground-based photometry with a custom narrow-band photometric filter, and adaptive optics imaging. At a distance of $d=27.9mathrm{pc}$, G 9-40b is the second closest transiting planet discovered by K2 to date. The planets large transit depth ($sim$3500ppm), combined with the proximity and brightness of the host star at NIR wavelengths (J=10, K=9.2) makes G 9-40b one of the most favorable sub-Neptune-sized planet orbiting an M-dwarf for transmission spectroscopy with JWST, ARIEL, and the upcoming Extremely Large Telescopes. The star is relatively inactive with a rotation period of $sim$29 days determined from the K2 photometry. To estimate spectroscopic stellar parameters, we describe our implementation of an empirical spectral matching algorithm using the high-resolution NIR HPF spectra. Using this algorithm, we obtain an effective temperature of $T_{mathrm{eff}}=3404pm73$K, and metallicity of $mathrm{[Fe/H]}=-0.08pm0.13$. Our RVs, when coupled with the orbital parameters derived from the transit photometry, exclude planet masses above $11.7 M_oplus$ with 99.7% confidence assuming a circular orbit. From its radius, we predict a mass of $M=5.0^{+3.8}_{-1.9} M_oplus$ and an RV semi-amplitude of $K=4.1^{+3.1}_{-1.6}mathrm{m:s^{-1}}$, making its mass measurable with current RV facilities. We urge further RV follow-up observations to precisely measure its mass, to enable precise transmission spectroscopic measurements in the future.
We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptunes distant 9:1 mean motion resonance at semimajor axis $aapprox~130$~au. Both objects are securely resonant on 10~Myr timescales, with one securely in t he 9:1 resonances leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These objects are the largest semimajor axis objects with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust resonance population estimate beyond 100~au. The detection of these objects implies a 9:1 resonance population of $1.1times10^4$ objects with $H_r<8.66$ ($D~gtrsim~100$~km) on similar orbits (95% confidence range of $sim0.4-3times10^4$). Integrations over 4~Gyr of an ensemble of clones spanning these objects orbit fit uncertainties reveal that they both have median resonance occupation timescales of $sim1$~Gyr. These timescales are consistent with the hypothesis that these objects originate in the scattering population but became transiently stuck to Neptunes 9:1 resonance within the last $sim1$~Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000-4500 objects with $H_r<8.66$; this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper belts dynamical history.
The observed physical clustering of the orbits of small bodies in the distant Kuiper Belt (TNOs) has recently prompted the prediction of an additional planet in the outer solar system. Since the initial posing of the hypothesis, the effects of Planet Nine on the dynamics of the main cluster of TNOs - the objects anti-aligned with its orbit - have been well-studied. In particular, numerical simulations have revealed a fascinating phenomenon, referred to as resonance hopping, in which these objects abruptly transition between different mean-motion commensurabilities with Planet Nine. In this work, we explore this effect in greater detail, with the goal of understanding what mechanism prompts the hopping events to occur. In the process, we elucidate the often underestimated role of Neptune scattering interactions, which leads to diffusion in the semi-major axes of these distant TNOs. In addition, we demonstrate that although some resonant interactions with Planet Nine do occur, the anti-aligned objects are able to survive without the resonances, confirming that the dynamics of the TNOs are predominantly driven by secular, rather than resonant, interactions with Planet Nine.
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by th e star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا