ﻻ يوجد ملخص باللغة العربية
We classify new physics signals in coherent elastic neutrino-nucleus scattering (CE$ u$NS) processes induced by $^8$B solar neutrinos in multi-ton xenon dark matter (DM) detectors. Our analysis focuses on vector and scalar interactions in the effective and light mediator limits after considering the constraints emerging from the recent COHERENT data and neutrino masses. In both cases we identify a region where measurements of the event spectrum alone suffice to establish whether the new physics signal is related with vector or scalar couplings. We identify as well a region where measurements of the recoil spectrum are required so to establish the nature of the new interaction, and categorize the spectral features that enable distinguishing the vector from the scalar case. We demonstrate that measurements of the isospin nature of the new interaction and thereby removal of isospin related degeneracies are possible by combining independent measurements from two different detectors. We also comment on the status of searches for vector and scalar interactions for on-going multi-ton year xenon experiments.
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known.
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino
Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge $Q_W$ of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new p
In several extensions of the Standard Model of Particle Physics (SMPP), the neutrinos acquire electromagnetic properties such as the electric millicharge. Theoretical and experimental bounds have been reported in the literature for this parameter. In
Future dark matter (DM) direct detection searches will be subject to irreducible neutrino backgrounds that will challenge the identification of an actual WIMP signal in experiments without directionality sensitivity. We study the impact of neutrino-q