ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on neutrino electric millicharge from experiments of elastic neutrino-electron interaction and future experimental proposals involving coherent elastic neutrino-nucleus scattering

88   0   0.0 ( 0 )
 نشر من قبل Alexander Parada Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف A. Parada




اسأل ChatGPT حول البحث

In several extensions of the Standard Model of Particle Physics (SMPP), the neutrinos acquire electromagnetic properties such as the electric millicharge. Theoretical and experimental bounds have been reported in the literature for this parameter. In this work, we first carried out a statistical analysis by using data from reactor neutrino experiments, which include elastic neutrino-electron scattering (ENES) processes, in order to obtain both individual and combined limits on the neutrino electric millicharge (NEM). Then we performed a similar calculation to show a estimate of the sensitivity of future experiments of reactor neutrinos to the NEM, by involving coherent elastic neutrino-nucleus scattering (CENNS). In the first case, the constraints achieved from the combination of several experiments are $-1.1times 10^{-12}e < q_{ u} < 9.3times 10^{-13}e$ ($90%$ C.L.), and in the second scenario we obtained the bounds $-1.8times 10^{-14}e < q_{ u} < 1.8times 10^{-14}e$ ($90%$ C.L.). As we will show here, these combined analyses of different experimental data can lead to stronger constraints than those based on individual analysis. Where CENNS interactions would stand out as an important alternative to improve the current limits on NEM.

قيم البحث

اقرأ أيضاً

We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino sources, and use gaseous helium and fluorine as examples of detector material. We generate Standard Model predictions, and compare to scenarios that include new, light vector or scalar mediators. We show that directional detectors can provide valuable additional information in discerning new physics, and we identify prominent spectral features in both the angular and the recoil energy spectrum for light mediators, even for nuclear recoil energy thresholds as high as $sim 50$ keV. Combined with energy and timing information, directional information can play an important role in extracting new physics from CE$ u$NS experiments.
After the first measurement of the coherent elastic neutrino nucleus scattering (CENNS) by the COHERENT Collaboration, it is expected that new experiments will confirm the observation. Such measurements will allow to put stronger constraints or disco ver new physics as well as to probe the Standard Model by measuring its parameters. This is the case of the weak mixing angle at low energies, which could be measured with an increased precision in future results of CENNS experiments using, for example, reactor antineutrinos. In this work we analyze the physics potential of different proposals for the improvement of our current knowledge of this observable and show that they are very promising.
623 - D. Akimov , J.B. Albert , P. An 2017
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.
New measurements of the coherent elastic neutrino-nucleus scattering (CEvNS) are expected to be achieved in the near future by using two neutrino production channels with different energy distributions: the very low energy electron antineutrinos from reactor sources and the muon and electron neutrinos from spallation neutron sources (SNS) with a relatively higher energy. Although precise measurements of this reaction would allow an improved knowledge of standard and beyond the Standard Model physics, it is important to distinguish the different new contributions to the process. We illustrate this idea by constraining the average neutron root mean square (rms) radius of the scattering material, as a standard physics parameter, together with the nonstandard interactions (NSI) contribution as the new physics formalism. We show that the combination of experiments with different neutrino energy ranges could give place to more robust constraints on these parameters as long as the systematic errors are under control.
262 - S. Kerman , V. Sharma , M. Deniz 2016
Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitat ive studies on the transitions towards decoherency. A parameter ($alpha$) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold and target nucleus are studied. The ranges of $alpha$ which can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in $alpha$ would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to $alpha$>0.95 are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا