ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Structure Physics in Coherent Elastic Neutrino-Nucleus Scattering

122   0   0.0 ( 0 )
 نشر من قبل Vishvas Pandey
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known. We present microscopic nuclear structure physics calculations of charge and weak nuclear form factors and CE$ u$NS cross sections on $^{12}$C, $^{16}$O, $^{40}$Ar, $^{56}$Fe and $^{208}$Pb nuclei. We obtain the proton and neutron densities, and charge and weak form factors by solving Hartree-Fock equations with a Skyrme (SkE2) nuclear potential. We validate our approach by comparing $^{208}$Pb and $^{40}$Ar charge form factor predictions with elastic electron scattering data. In view of the worldwide interest in liquid-argon based neutrino and dark matter experiments, we pay special attention to the $^{40}$Ar nucleus and make predictions for the $^{40}$Ar weak form factor and the CE$ u$NS cross sections. Furthermore, we attempt to gauge the level of theoretical uncertainty pertaining to the description of the $^{40}$Ar form factor and CE$ u$NS cross sections by comparing relative differences between recent microscopic nuclear theory and widely-used phenomenological form factor predictions. Future precision measurements of CE$ u$NS will potentially help in constraining these nuclear structure details that will in turn improve prospects of extracting new physics.



قيم البحث

اقرأ أيضاً

623 - D. Akimov , J.B. Albert , P. An 2017
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.
109 - C. G. Payne , S. Bacca , G. Hagen 2019
Coherent elastic neutrino scattering on the 40Ar nucleus is computed with coupled-cluster theory based on nuclear Hamiltonians inspired by effective field theories of quantum chromodynamics. Our approach is validated by calculating the charge form fa ctor and comparing it to data from electron scattering. We make predictions for the weak form factor, the neutron radius, and the neutron skin, and estimate systematic uncertainties. The neutron-skin thickness of 40Ar40 is consistent with results from density functional theory. Precision measurements from coherent elastic neutrino-nucleus scattering could potentially be used to extract these observables and help to constrain nuclear models.
The cross section for coherent elastic neutrino-nucleus scattering (CE$ u$NS) depends on the response of the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a $Z$ boson. This is typically subsumed into a n object called the weak form factor of the nucleus. Here, we provide results for this form factor calculated using the large-scale nuclear shell model for a wide range of nuclei of relevance for current CE$ u$NS experiments, including cesium, iodine, argon, fluorine, sodium, germanium, and xenon. In addition, we provide the responses needed to capture the axial-vector part of the cross section, which does not scale coherently with the number of neutrons, but may become relevant for the SM prediction of CE$ u$NS on target nuclei with nonzero spin. We then generalize the formalism allowing for contributions beyond the SM. In particular, we stress that in this case, even for vector and axial-vector operators, the standard weak form factor does not apply anymore, but needs to be replaced by the appropriate combination of the underlying nuclear structure factors. We provide the corresponding expressions for vector, axial-vector, but also (pseudo-)scalar, tensor, and dipole effective operators, including two-body-current effects as predicted from chiral effective field theory. Finally, we update the spin-dependent structure factors for dark matter scattering off nuclei according to our improved treatment of the axial-vector responses.
75 - J.I. Collar , A.R.L. Kavner , 2019
A new measurement of the quenching factor for low-energy nuclear recoils in CsI[Na] is presented. Past measurements are revisited, identifying and correcting several systematic effects. The resulting global data are well-described by a physics-based model for the generation of scintillation by ions in this material, in agreement with phenomenological considerations. The uncertainty in the new model is reduced by a factor of four with respect to an energy-independent quenching factor initially adopted as a compromise by the COHERENT collaboration. A significantly improved agreement with Standard Model predictions for the first measurement of CE$ u$NS is generated. We emphasize the critical impact of the quenching factor on the search for new physics via CE$ u$NS experiments.
291 - S. X. Nakamura 2009
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to neutrino oscillation experiments of current interest. Our approach is based on a combined use of the Sato-Lee model of electroweak pion production on a nucleon and the Delta-hole model of pion-nucleus reactions. Thus we develop a model which describes pion-nucleus scattering and electroweak coherent pion production in a unified manner. Numerical calculations are carried out for the case of the 12C target. All the free parameters in our model are fixed by fitting to both total and elastic differential cross sections for pi-12C scattering. Then we demonstrate the reliability of our approach by confronting our prediction for the coherent pion photo-productions with data. Finally, we calculate total and differential cross sections for neutrino-induced coherent pion production, and some of the results are (will be) compared with the recent (forthcoming) data from K2K, SciBooNE and MiniBooNE. We also study effect of the non-locality of the Delta-propagation in the nucleus, and compare the elementary amplitudes used in different microscopic calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا