ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating a Common Question from Multiple Documents using Multi-source Encoder-Decoder Models

58   0   0.0 ( 0 )
 نشر من قبل Woon Sang Cho
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ambiguous user queries in search engines result in the retrieval of documents that often span multiple topics. One potential solution is for the search engine to generate multiple refined queries, each of which relates to a subset of the documents spanning the same topic. A preliminary step towards this goal is to generate a question that captures common concepts of multiple documents. We propose a new task of generating common question from multiple documents and present simple variant of an existing multi-source encoder-decoder framework, called the Multi-Source Question Generator (MSQG). We first train an RNN-based single encoder-decoder generator from (single document, question) pairs. At test time, given multiple documents, the Distribute step of our MSQG model predicts target word distributions for each document using the trained model. The Aggregate step aggregates these distributions to generate a common question. This simple yet effective strategy significantly outperforms several existing baseline models applied to the new task when evaluated using automated metrics and human judgments on the MS-MARCO-QA dataset.



قيم البحث

اقرأ أيضاً

In the task of machine translation, context information is one of the important factor. But considering the context information model dose not proposed. The paper propose a new model which can integrate context information and make translation. In th is paper, we create a new model based Encoder Decoder model. When translating current sentence, the model integrates output from preceding encoder with current encoder. The model can consider context information and the result score is higher than existing model.
We introduce ASQ, a tool to automatically mine questions and answers from a sentence using the Abstract Meaning Representation (AMR). Previous work has used question-answer pairs to specify the predicate-argument structure of a sentence using natural language, which does not require linguistic expertise or training, and created datasets such as QA-SRL and QAMR, for which the question-answer pair annotations were crowdsourced. Our goal is to build a tool (ASQ) that maps from the traditional meaning representation AMR to a question-answer meaning representation (QMR). This enables construction of QMR datasets automatically in various domains using existing high-quality AMR parsers, and provides an automatic mapping AMR to QMR for ease of understanding by non-experts. A qualitative evaluation of the output generated by ASQ from the AMR 2.0 data shows that the question-answer pairs are natural and valid, and demonstrate good coverage of the content. We run ASQ on the sentences from the QAMR dataset, to observe that the semantic roles in QAMR are also captured by ASQ. We intend to make this tool and the results publicly available for others to use and build upon.
With the rising number of interconnected devices and sensors, modeling distributed sensor networks is of increasing interest. Recurrent neural networks (RNN) are considered particularly well suited for modeling sensory and streaming data. When predic ting future behavior, incorporating information from neighboring sensor stations is often beneficial. We propose a new RNN based architecture for context specific information fusion across multiple spatially distributed sensor stations. Hereby, latent representations of multiple local models, each modeling one sensor station, are jointed and weighted, according to their importance for the prediction. The particular importance is assessed depending on the current context using a separate attention function. We demonstrate the effectiveness of our model on three different real-world sensor network datasets.
How to efficiently generate an accurate, well-structured overview report (ORPT) over thousands of related documents is challenging. A well-structured ORPT consists of sections of multiple levels (e.g., sections and subsections). None of the existing multi-document summarization (MDS) algorithms is directed toward this task. To overcome this obstacle, we present NDORGS (Numerous Documents Overview Report Generation Scheme) that integrates text filtering, keyword scoring, single-document summarization (SDS), topic modeling, MDS, and title generation to generate a coherent, well-structured ORPT. We then devise a multi-criteria evaluation method using techniques of text mining and multi-attribute decision making on a combination of human judgments, running time, information coverage, and topic diversity. We evaluate ORPTs generated by NDORGS on two large corpora of documents, where one is classified and the other unclassified. We show that, using Saatys pairwise comparison 9-point scale and under TOPSIS, the ORPTs generated on SDSs with the length of 20% of the original documents are the best overall on both datasets.
Pre-trained models for Natural Languages (NL) like BERT and GPT have been recently shown to transfer well to Programming Languages (PL) and largely benefit a broad set of code-related tasks. Despite their success, most current methods either rely on an encoder-only (or decoder-only) pre-training that is suboptimal for generation (resp. understanding) tasks or process the code snippet in the same way as NL, neglecting the special characteristics of PL such as token types. We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code. Our code and pre-trained models are released at https: //github.com/salesforce/CodeT5 .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا