ترغب بنشر مسار تعليمي؟ اضغط هنا

ASQ: Automatically Generating Question-Answer Pairs using AMRs

117   0   0.0 ( 0 )
 نشر من قبل Geetanjali Rakshit
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce ASQ, a tool to automatically mine questions and answers from a sentence using the Abstract Meaning Representation (AMR). Previous work has used question-answer pairs to specify the predicate-argument structure of a sentence using natural language, which does not require linguistic expertise or training, and created datasets such as QA-SRL and QAMR, for which the question-answer pair annotations were crowdsourced. Our goal is to build a tool (ASQ) that maps from the traditional meaning representation AMR to a question-answer meaning representation (QMR). This enables construction of QMR datasets automatically in various domains using existing high-quality AMR parsers, and provides an automatic mapping AMR to QMR for ease of understanding by non-experts. A qualitative evaluation of the output generated by ASQ from the AMR 2.0 data shows that the question-answer pairs are natural and valid, and demonstrate good coverage of the content. We run ASQ on the sentences from the QAMR dataset, to observe that the semantic roles in QAMR are also captured by ASQ. We intend to make this tool and the results publicly available for others to use and build upon.

قيم البحث

اقرأ أيضاً

184 - Fanyi Qu , Xin Jia , Yunfang Wu 2021
Generating high quality question-answer pairs is a hard but meaningful task. Although previous works have achieved great results on answer-aware question generation, it is difficult to apply them into practical application in the education field. Thi s paper for the first time addresses the question-answer pair generation task on the real-world examination data, and proposes a new unified framework on RACE. To capture the important information of the input passage we first automatically generate(rather than extracting) keyphrases, thus this task is reduced to keyphrase-question-answer triplet joint generation. Accordingly, we propose a multi-agent communication model to generate and optimize the question and keyphrases iteratively, and then apply the generated question and keyphrases to guide the generation of answers. To establish a solid benchmark, we build our model on the strong generative pre-training model. Experimental results show that our model makes great breakthroughs in the question-answer pair generation task. Moreover, we make a comprehensive analysis on our model, suggesting new directions for this challenging task.
Neural network-based methods represent the state-of-the-art in question generation from text. Existing work focuses on generating only questions from text without concerning itself with answer generation. Moreover, our analysis shows that handling ra re words and generating the most appropriate question given a candidate answer are still challenges facing existing approaches. We present a novel two-stage process to generate question-answer pairs from the text. For the first stage, we present alternatives for encoding the span of the pivotal answer in the sentence using Pointer Networks. In our second stage, we employ sequence to sequence models for question generation, enhanced with rich linguistic features. Finally, global attention and answer encoding are used for generating the question most relevant to the answer. We motivate and linguistically analyze the role of each component in our framework and consider compositions of these. This analysis is supported by extensive experimental evaluations. Using standard evaluation metrics as well as human evaluations, our experimental results validate the significant improvement in the quality of questions generated by our framework over the state-of-the-art. The technique presented here represents another step towards more automated reading comprehension assessment. We also present a live system footnote{Demo of the system is available at url{https://www.cse.iitb.ac.in/~vishwajeet/autoqg.html}.} to demonstrate the effectiveness of our approach.
In education, open-ended quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternativ e. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.
Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing an swers. We begin by collecting a new dataset of news articles with questions as titles and pairing them with summaries of varying length. This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions. We then reinforce the QA pair generation process with a differentiable reward function to mitigate exposure bias, a common problem in natural language generation. Both automatic metrics and human evaluation demonstrate these QA pairs successfully capture the central gists of the articles and achieve high answer accuracy.
163 - Xinya Du , Claire Cardie 2018
We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models t hat only take into account sentence-level information (Heilman and Smith, 2010; Du et al., 2017; Zhou et al., 2017), we find that the linguistic knowledge introduced by the coreference representation aids question generation significantly, producing models that outperform the current state-of-the-art. We apply our system (composed of an answer span extraction system and the passage-level QG system) to the 10,000 top-ranking Wikipedia articles and create a corpus of over one million question-answer pairs. We also provide a qualitative analysis for this large-scale generated corpus from Wikipedia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا